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EXECUTIVE SUMMARY 

Before the switch in design specifications from Standard Specifications to the fifth edition 

of the American Association of State Highway and Transportation Officials (AASHTO) Load and 

Resistance Factor Design (LRFD) Bridge Design Specifications in 2010, few bridges in the state 

of Georgia were designed with seismic detailing. Recent 2014 LRFD specifications increased the 

number of Georgia bridges requiring seismic design and details, with the state of Georgia being 

identified as a region with seismic activity leading to estimated maximum peak ground 

accelerations of 0.34 g in Site Class E. The purpose of this study is to investigate the need for these 

increased seismological design requirements for bridges in the state of Georgia based on their 

dynamic characteristics, local soil conditions, and ground motion frequency contents. Three of the 

most common factors for a possible deficiency in performance in a possible seismic event arise 

from lap splice at column bases, inadequate transverse reinforcement in the column hinge zones, 

and insufficient embedded length of piles into bents. Therefore, these design parameters and their 

influences on seismic risk are investigated in detail in this study. 

In this study, the performance of representative bridges from different bridge classes in 

Georgia is investigated to estimate the expected seismic behavior considering the latest AASHTO 

LRFD Bridge Design Specifications [1]. The responses are compared with the previously used 

design practices in Georgia’s Bridge and Structures Design Manual. Different cases of varying lap 

splice length, seismic and non-seismic transverse reinforcement spacing, and seismic and non-

seismic pile bents are compared based on nonlinear time history analyses. Probabilistic analysis is 

performed through analyzing these bridges under a suite of 48 ground motions to compare the 

component capacity against the imposed demand of the columns and piles. Seismic damage risk 



xvi 

 

estimates computed through the probabilistic analyses for different seismic site classes and for 

different regions in the state are used to make recommendations on the bridges to be built in the 

future in the state of Georgia. The primary conclusions from this study are given below. 

Conclusions 3-6 are based on results from analyses conducted by bridge type.  

1. The analytical results show significant influences of lap-splice length, rebar size, and 

transverse reinforcement (TR) spacing on the ductility behavior of lap-spliced columns. 

2. For all bridge classes, lap splice at the base of the column with 12-in. TR spacing is 

acceptable for the lowest Seismic Zone 1A (SD1<0.10). (Note: SD1 = the design spectral 

response acceleration parameter at 1-s period) 

3. For multi-span simply supported concrete girder bridges, results for Site Classes A, B, and C show 

a lower than 25% probability of exceeding Limit State 1 with non-seismic TR spacing. For Site 

Class D, 3-in. TR spacing is recommended in Regions 1 and 2 to reduce the risk of exceeding Limit 

State 1 (initial longitudinal rebar yield) from 40.15% to 13.16% and 29.38% to 8.07%, respectively. 

For Site Class E, 3-in. TR spacing is recommended in Regions 1, 2, and 3 to reduce the risk of 

exceeding Limit State 1 from 68.53% to 33.87%, 51.39% to 19.88%, and 42.37% to 14.36%, 

respectively. 

4. For multi-span continuous steel girder bridges, the 9-ft lap splice can be provided at the base of the 

column. 3-in. TR spacing is recommended to reduce the risk of exceeding Limit State 1 by 20-30% 

for Seismic Zone 2. Lap splice is not recommended for Zone 2. 

5. For multi-span simply supported steel girder bridges, the risk values comparing the case of 

one stirrup in each direction (two total legs in each plane) and two stirrups in each direction 

(four total legs in each plane) with #6 at 6-in. transverse reinforcement are investigated. 
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The results show that there is less than 2% difference in probability of exceeding defined 

limit states between the two cases. Regions 1 and 2 for Site Classes B and C; Regions 1-3 

for Site Class D; Regions 1-5 for Site Class E show relatively high risk values (>25%) of 

exceeding Limit State 1, and based on parametric studies of seismic risk from other bridge 

classes, reducing transverse spacing is recommended. 

6. For pile bents, for Seismic Zone 1, at least 12-in. embedment of piles into bents is the only 

requirement. The specifications do not include the pile sizes and corresponding embedment 

lengths, which are consistent with the experimental results, if bents are designed 

appropriately. The pile embedment length does not significantly affect the pile lateral 

strength. 

7. The results of the seismic risk assessment on columns with varying TR spacing showed 

similar responses. The risk probabilities for the #3 @ 3-in., #6 @ 4-in., and #6 @ 6-in. 

cases for Georgia bridges are similar, with a difference of approximately 5% under the 

maximum factored PGA of 0.35 g in Georgia 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Description 

The AASHTO LRFD Bridge Design Specifications [1] include extensive seismic design 

provisions. While earthquakes are considered primarily a problem on the West Coast of the United 

States, geologists have observed ongoing tectonism in the southeastern region [2]. The 

southeastern United States has historically seen some of the largest earthquakes, e.g. the 1811–

1812 New Madrid earthquakes and the 1886 Charleston earthquake. Because Georgia lies in the 

vicinity of this active seismic region, potential seismic hazard is identified in the state with 

estimated maximum peak ground accelerations of 0.34 g in Site Class E. Recent studies [3] have 

shown that seismic risk in Georgia, even though low, can impose significant demands on some 

bridges depending on their dynamic characteristics. Furthermore, seismic provisions of the 2014 

AASHTO LRFD Bridge Design Specifications [1] have been integrated with Georgia’s Bridge 

and Structures Design Manual [4] as part of the design specifications. This combination has led to 

an increase in the number of bridges affected in Georgia by the LRFD Specifications. However, 

there has not been significant practical experience with damage or failure to bridges from seismic 

events to demonstrate the necessity of this change. Therefore, there is the need to evaluate the 

seismic performance and associated damage risk of Georgia’s bridges to the seismic hazard present 

in the state. This is done through studying the impact of the latest developments in the LRFD 

Specifications on these structures. 

The latest 2014 AASHTO LRFD Bridge Design Specifications [1] recognize the seismic 

hazard return period to be equal to 1000 years instead of the previously adopted return period of 

500 years. This has resulted in a shift of boundaries of seismic performance zones. According to 
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the latest code, the upper boundary for spectral acceleration (at 1.0 second) for Seismic Zone 1 is 

0.15 g as opposed to 0.10 g in the previous AASHTO Specifications (2011). The code has 

increased seismic design requirements defined for Seismic Zones 2, 3, and 4. However, the change 

in the spectral acceleration boundaries has led to some ambiguity regarding the seismic detailing 

requirements, specifically for lap splice and transverse reinforcement spacing, for Seismic Zone 1 

when the spectral acceleration is between 0.10 and 0.15 g. 

Lap splices are an essential part of reinforced concrete structures as they help to maintain 

the continuity between the structural members. It has been customary to provide lap splices at the 

bottom of the bridge columns to maintain continuity of the connection with the foundations. 

During earthquake events, column connections with other bridge components, such as foundations 

and bent caps, are subjected to significant moments that lead to tensile stresses in the longitudinal 

reinforcement. If a lap splice is present at these locations, it results in splitting bond failure due to 

stiffness degradation and low deformation capacity [5,6]. Furthermore, inadequate lap splice 

length combined with widely spaced transverse reinforcement worsens the seismic performance 

of these columns. Adequate transverse confinement is necessary to develop a bond between the 

longitudinal bars and surrounding concrete, so that the transfer of force between the two spliced 

bars happens effectively. Previous research has shown that the lack of adequate transverse 

reinforcement leads to low flexural strength, low shear strength, and low ductility, which result in 

a higher damage risk. 

In recent decades, seismic fragility curves have been used extensively to evaluate the 

damage risk associated with bridge components and the structure as a whole [7–10]. Fragility 

curves depict the conditional probability of a structural component reaching or exceeding a limit 

state given the intensity measure of the earthquake. Researchers have developed several ways to 
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quantify the vulnerability of structures [9,10]. Analytical fragility curves are utilized in this study 

to assess the impact of the latest AASHTO LRFD Bridge Design Specifications [1] on highway 

bridges in Georgia. These curves are used to estimate the associated seismic damage risk as a 

function of seismic hazard levels in various regions in the state.   

1.2 Objectives and Scope of Research 

The goal of this research is to evaluate the seismic performance and fragility of multi-span 

highway bridges of varying classes in Georgia considering the latest AASHTO LRFD seismic 

design provisions. Based on the results, the study aims to provide recommendations to the Georgia 

Department of Transportation (GDOT) regarding seismic detailing for multi-span bridges to be 

built in the future.  

The following are the specific tasks that have been completed in this research: 

1. Review commonly used detailing practices in the Bridge and Structures Design Manual 

[4] in the current design codes and compare them with the latest seismic design 

provisions in AASHTO LRFD Bridge Design Specifications [1]. 

2. Perform a literature review of previous research on seismic detailing, including the 

impacts of lap splice and transverse reinforcement on column performance. To analyze 

the effect of lap splices, develop a stress–strain curve for the lap-spliced section based on 

the truss-based force transfer mechanism model to evaluate its impact on columns. 

3. Develop seismic hazard maps and design response spectra for various regions in the state 

of Georgia to estimate the expected peak ground accelerations (PGA) in these regions.  



4 

 

4. Develop three-dimensional analytical models of selected multi-span bridges based on 

Georgia bridge plans and models of lap splice and transverse reinforcement to assess 

their seismic performance. 

5. Perform deterministic seismic analyses considering the current practices used in Georgia 

and the latest AASHTO LRFD Bridge Design Specifications [1] to assess the 

performance differences between the two sets of design guidance. 

6. Generate probabilistic seismic demand models and fragility curves as a function of lap 

splice length and transverse reinforcement spacing to estimate the associated seismic 

damage risk. 

7. Provide recommendations to GDOT for bridges to be built in the future based on the 

obtained results. 

 

1.3 Outline 

The report is organized into eight chapters: 

Chapter 2 presents an overview of past research conducted on seismic detailing 

highlighting the importance of providing adequate lap splice and transverse reinforcement, 

especially in columns in seismically active regions. This chapter also presents the stress–strain 

formulation used to study the lap splice behavior and effects of various geometric parameters on 

the lap splice strength. 

Chapter 3 presents assessments of the seismic hazard for Site Classes A, B, C, D, and E in 

the state of Georgia. The state is divided into six regions based on the potential peak ground 
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acceleration in these regions. This chapter further provides an overview of the bridge inventory in 

the state of Georgia.  

Chapter 4 summarizes the mathematical framework employed to formulate the analytical 

fragility curves in the study, along with the limit state capacity and probabilistic seismic demand 

model definitions. 

Chapter 5 presents the characteristics of the representative bridges investigated for each of 

the three bridge classes analyzed in the study: (1) multi-span simply supported concrete girder 

bridges, (2) multi-span continuous steel girder bridges, (3) and multi-span simply supported steel 

girder bridges. This chapter further explores the effect of lap splice and transverse reinforcement 

spacing on the columns and bearings of the bridge.  

Chapter 6 presents the seismic fragility curves for each of the bridge classes. It evaluates 

the site-specific fragility damage risk estimates for columns to determine the appropriate seismic 

detailing requirements in terms of lap-splice and pile-bent specifications for various regions in the 

state of Georgia. 

Chapter 7 presents the effects of the AASHTO LRFD required transverse reinforcement 

spacings on column responses. 

Chapter 8 presents the key contributions of the research, along with recommendations 

based on the analysis results. 
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CHAPTER 2 LAP SPLICE REINFORCEMENT AND TRANSVERSE 

REINFORCEMENT 

Studies on lap splices began in the mid-1970s when several bridge columns suffered severe 

damage and collapse during moderate-intensity earthquakes. Researchers conducted experimental 

tests to investigate the impact of lap-splice lengths and transverse detailing on column strength 

and ductility. Following an introductory section, this chapter provides a summary of those studies 

and highlights the impacts of lap splice lengths and transverse reinforcement detailing on column 

strength and ductility. The third section of this chapter presents a lap splice formulation that is 

used in assessing the bridge fragilities. Finally, a parametric study is presented to investigate the 

effects of variables that affect the strength of a seismically detailed section compared to a non-

seismically detailed section. 

 

2.1 Introduction 

This study focuses on seismic detailing of highway bridges located in the state of Georgia. 

Many of these bridges were built before specifications for seismic design such that lap splices were 

often at the column bases and transverse reinforcement was widely spaced. Therefore, these factors 

lead to increased potential seismic risk for bridges built before 1970. The first instance of the need 

for seismic detailing was recognized in the San Fernando earthquake in 1971. Despite being 

considered an earthquake of moderate intensity, it led to the collapse of five freeways. More recent 

examples include the upper deck failure of the Cypress viaduct of Interstate 880 after the Loma 

Prieta earthquake in 1989. As shown in Figure 2.1, the columns of the viaduct could not support 

the superstructure, leading to the death of 42 people by falling roadway. Most of the other bridges 
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that collapsed in the Loma Prieta earthquake were constructed before 1971 and lacked seismic 

detailing requirements [11]. 

 

Figure 2.1 – Column Failure Leading to Substructure 

Collapse of Cypress Viaduct in Oakland, California. 

A similar type of failure was identified in the 1995 Kobe, Japan, earthquake in which a 

630 m intermediate segment of the Hanshin Expressway supported by 18 circular columns failed, 

as shown in Figure 2.2. Post-earthquake investigations revealed that poor transverse column 

reinforcement, improper anchorage of longitudinal reinforcement, and lack of study of soil-

structure interactions led to overturning of the complete bridge in the transverse direction [12]. 

Investigators also found that the longitudinal reinforcement bars joined together using butt welding 

at the base of the columns lacked flexural strength, which was a cause of failure. 
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(a) (b) 

 

Figure 2.2 – Overturning Failure of Bridge Segment on Hanshin Expressway due to 

Inadequate Transverse Reinforcement, Improper Longitudinal Reinforcement Anchorage, 

and Soil-Structure Interactions. 

The substructure for any bridge plays an important role in transferring all types of loads 

imposed on the bridge to the ground. Failure of seismically inadequate columns has led to severe 

damage or collapse of bridges in the past. Of course, the seismic hazard in the state of Georgia 

differs from these cases. However, the risk in Georgia and recent LRFD Specifications warrant an 

in-depth analysis of column detailing in Georgia relative to the seismic risk of bridges.  

2.2 Literature Review 

The earliest experimental research on lap splices was conducted by Orangun et al. [13], 

who developed an empirical design equation for development and lap splice length in terms of 

steel stress, concrete strength, bar diameter, concrete cover, and transverse reinforcement. This 
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equation was adopted into the 1989 American Concrete Institute (ACI) Building Codes. These 

equations were later revised by experimental tests carried out by Sozen and Moehle [14]. 

In the same decade, Cairns and Arthur carried out an experimental test in which they 

evaluated responses from 51 columns with smooth and roughened longitudinal bars under lateral 

cyclic loading [15]. The conclusion from their research was that lap-spliced sections in tension and 

compression have significantly different responses. Further, columns with roughened bars 

performed significantly better than columns with smooth bars. 

Studies by Paulay et al. revealed the importance of confinement by transverse 

reinforcement in spliced column sections [16]. They performed experimental tests on 12 specimens 

and found that despite insufficient lap splice length, well-confined columns could develop tensile 

yield stress in the longitudinal reinforcement and maintain their lateral load capacity up to high 

displacement ductility of about 4. 

Lynn et al. investigated the impact of longitudinal reinforcement ratio and transverse 

spacing on lap-spliced columns from pre-1970 [17]. The test specimens included eight 18-inch-

square columns out of which five had continuous reinforcement and three had lap splices at the 

bottom of the columns. These columns were subjected to reversed cyclic lateral displacements 

under a vertical load. The findings of the research revealed that the columns with a low 

reinforcement ratio subjected to low axial stresses showed a ductile response with a displacement 

ductility up to 4.2. However, ultimately the columns with a lap splice failed in shear due to cracks 

developed along the lap splice. On the other hand, the columns subjected to high axial stresses 

showed brittle failure, irrespective of the presence of a lap splice, shortly after reaching the yield 

strength. 
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Melek and Wallace [18] conducted a similar study to examine the effects of lap-splices on 

short columns through experimental tests. The columns in their experiments were subjected to 

lateral cyclic loading while under axial compression, as shown in Figure 2.3. Their findings 

revealed that inadequate confining reinforcement led to bond deterioration between reinforcement 

bars and surrounding concrete. This led to steep degradation in the strength of columns at lateral 

drift ratios of 1.0% to 1.5%. Later, Cho and Pincheira proposed an analytical modeling approach 

using different bond–slip relationships [19] to match the experimental results by Melek and 

Wallace [18]. 

 

Figure 2.3 – Test Setup Used by Melek and Wallace [18] 

for Lateral Cyclic Loading of Columns. 

Another study to investigate the effect of lap splices on beams was conducted by 

Harajli et al. [20]. They evaluated the stress–strain relationship based on the bond–slip behavior 

between steel and concrete when the beams were subjected to a four-point flexural test with the 

lap splice in the middle. Wu et al. conducted a similar study on lap-spliced beam sections with 

enamel-coated reinforcing bars and found that enamel coating increases the bond strength of 

deformed rebars in normal strength concrete [21].  
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Recently, studies have been conducted to evaluate the response of lap-spliced sections in 

high-strength concrete members [22–24]. These studies show a similar response to earlier 

specimens and highlight the importance of adequate lap splice lengths and transverse detailing for 

improved column performance. While these studies mostly focus on the strength evaluation in the 

lap splice sections, several studies have been carried out to improve the strength of lap-spliced 

columns and beams through steel and fiber-reinforced polymer (FRP) jacketing [25–27]. 

All of these studies reveal a significant need for adequate lap splice length and transverse 

detailing to improve the response of columns under lateral cyclic loading. The objective of this 

study is to assess the impacts of these parameters on seismic performance for highway bridges in 

Georgia with non-seismic details compared to the latest AASHTO LRFD Bridge Design 

Specifications [1] by the means of fragility curves. 

2.3 Lap Splice Formulation 

The force transfer phenomenon in a lap-spliced section follows a complex mechanism 

(Figure 2.4(a)). However, simplifications can be made based on mechanistic principles to model 

its behavior. Traditionally, two mechanisms have been used to do this: bond mechanism and truss 

mechanism [28]. In a structural member, both mechanisms act together. For modeling purposes, it 

is fair to assume that either of the mechanisms dominates. 

The basic principle of the bond mechanism is that the lugs on the reinforcement bar exert 

a bearing force on the surrounding concrete at an angle. The component of this force parallel to 

the axis of the rebar causes shearing stress in the concrete, and the normal component of this force 

exerts a radial stress on concrete causing splitting of concrete. When the resultant stress exceeds 



12 

 

the tensile capacity of concrete, the concrete is no longer able to take the bearing force exerted by 

the reinforcement lugs, and failure of the section occurs. 

In the truss mechanism, a simple truss model is used to calculate the force transfer between 

the lap-spliced bars and the surrounding concrete. Priestley et al. [29] proposed the truss system 

methodology to model the approximate response of the longitudinal reinforcement in a lap-spliced 

section in tension. Tariverdilo et al. [30] used the truss mechanism model to evaluate the fragility 

functions for reinforced concrete (RC) frames with lap-spliced columns and matched the results 

with the experimental work done by Aboutaha et al. [25] and Melek and Wallace [18]. They 

concluded that the truss model adequately captures the maximum strength and post-peak softening 

behavior of spliced sections. Canbay and Frosch suggested a similar approach to evaluate the lap 

splice behavior. Their model, however, also included some empirical factors [31]. The model used 

in this study is based on the analytical formulation and as suggested by Priestley et al. [29]. 

Figure 2.4(b) represents the stress–strain model behavior of the truss system to model the 

approximate response of the lap-spliced bars. In this model, the lap splice section reaches the 

maximum peak strength, 𝑓𝑠,𝑚𝑎𝑥, until the surrounding concrete splits. At that point, the section 

experiences a steep softening behavior due to splitting of surrounding concrete until it reaches the 

point of constant frictional stress, 𝑓𝑟, developed across the failure interface. The corresponding 

strain values are 𝜀𝑠 and 𝜀𝑟, respectively. 
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                    (a)                            (b) 

Figure 2.4 – Lap Splice Reinforcement: (a) Mechanism, and 

(b) Stress–Strain Curve for a Numerical Model. 

The truss analogy assumes development of a uniform compressive field across the spliced 

bars at an angle approximately equal to 45°. The concrete surrounding the lap splice acts as 

compression struts to transfer the load between the bars. The mechanism considers the lap splice 

failure by considering the formation of fracture surfaces perpendicular to the column surface to 

allow the relative movement between bars. With each longitudinal bar, an associated characteristic 

concrete block, as depicted in Figure 2.5, of length equal to the lap splice length, 𝑙𝑠 , and 

perimeter, 𝑝, is assumed to contribute to the splice strength. 

The perimeter, 𝑝, of the characteristic concrete block for rectangular and circular column 

cross section can be calculated as follows: 

𝑠 𝑙
𝑝 = + 2(𝑑

2 𝑏 + 𝑐) ≤ 2√2 (𝑑𝑏 + 𝑐) (1) 
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where 𝑠𝑙 is the center-to-center spacing between the longitudinal bars, 𝑑𝑏 is the diameter of the 

longitudinal bars, and 𝑐  is the clear concrete cover. For a circular column cross section, the 

perimeter of the characteristic block can be written as: 

 
𝑝 =

𝜋𝐷

2𝑛
+ 2(𝑑𝑏 + 𝑐) ≤ 2√2 (𝑑𝑏 + 𝑐) (2) 

where 𝑛 is the number of evenly distributed longitudinal bars around the core of diameter, 𝐷, of 

the column. MacKay et al. concluded that the confined concrete did not add much to the lap splice 

strength in the case of cyclic loading; hence, the derivation ignores the strength contribution to the 

lap splice section due to the confined concrete [32]. 

  

(a) (b) 

Figure 2.5 – Characteristic Block for (a) Circular, and (b) Square Column. 

Thus, satisfying the equilibrium of the free body diagram of the system, the maximum 

force, 𝑇𝑏 , in the longitudinal reinforcement bar can be expressed in terms of concrete tensile 

strength, 𝑓𝑡, as follows: 
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  𝑇𝑏 = 𝐴𝑏 𝑓𝑠 = 𝑓𝑡 𝑝𝑙𝑠 (3) 

where 𝐴𝑏 is cross-sectional area of longitudinal bar, 𝑝 is perimeter of cylindrical block, and 𝑙𝑠 is 

length of lap splice. Once the lap splice section reaches its maximum stress capacity, 𝑓𝑠, the stress 

drops down to a constant value of residual stress, 𝑓𝑟. The residual stress can be calculated by the 

shear-friction concept by estimating the shear force contribution by the transverse reinforcement 

crossing the cracked plane as follows: 

  𝜇𝑛𝑙𝑛𝑡𝐴ℎ𝑓ℎ = 𝑛𝐴𝑏𝑓𝑟 (4) 

where 𝜇  is frictional factor, which is taken as 1.4, 𝑛𝑙  denotes the number of transverse 

reinforcement legs perpendicular to the cracked plane, 𝑛𝑡 the number of transverse reinforcement 

bars crossing the cracked plane, 𝐴ℎ the crack surface area, 𝑓ℎ the yield strength of the transverse 

reinforcement, and 𝑛 the number of longitudinal rebars in the tension side of the column. 

The strain can be taken equal to the elastic yield strain of the bar; however, Tariverdilo 

et al. assumed an additional slip displacement, 𝑢, equal to 1 mm at yield point that must be added 

to the elastic strain [30]. This additional displacement is assumed to occur due to the bar slip over 

a fictitious length, 𝑙𝑠𝑠. This length is different from the lap splice length. Tariverdilo evaluated the 

impact of lap splice on estimated risk of reinforced concrete columns assuming that the slip occurs 

over a length equal to the depth of the column section [30]. Thus, the total strain at the peak stress 

can be written as: 
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 𝜀𝑠 =

𝑓𝑠

𝐸𝑆
+

𝑢

𝑙𝑠𝑠
 (5) 

where 𝐸𝑆 is the elastic modulus of the rebar.  

At residual stress, 𝑓𝑟, the strain, 𝜀𝑟, is calculated by assuming a slip, 𝑢, equal to 10 mm that 

is approximately equal to the lug distance on the bar and can be written as: 

  𝜀𝑟 =
𝑢

𝑙𝑠𝑠
 (6) 

   

2.4 Effects of Variables on the Strength of Lap Splice Reinforcement 

From the equations discussed in Section 2.3, the lap splice strength is a function of several 

variables, such as lap splice length, column cross section, reinforcement ratio, etc. Therefore, it is 

desirable to investigate the impacts of these variables on the lap splice strength. The following 

subsections present a parametric study on the strength of the lap splice due to each of these 

variables. To isolate the effect of one variable, other variables are kept constant and equal to the 

most commonly used values in Georgia bridge columns.  

2.4.1 Effect of Lap Splice Length  

An adequate lap splice length is required to transfer the force from one rebar to another in 

a spliced section. While most of the experimental tests on lap splice lengths show that it has an 

important role to play in the splice strength, Paulay stated that increasing length of a lap splice in 

columns in case of cyclic loading is of very little benefit because of the “unzipping” effect [33]. 
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Despite the plethora of research on the impact of lap splices, there is no clear agreement between 

the relation of the lap splice length and column capacity. In this study, this relation is investigated 

using a numerical analysis.  

From Equation 3, the maximum stress developed in the lap splice is directly proportional 

to its length. In the present study, the effect of length of the spliced section is evaluated for the 

range of commonly used splice spacing in the state of Georgia. The inventory analysis revealed 

that older highway bridge columns in Georgia used lap splices as short as 4.5-ft However, the most 

commonly used lap splice lengths are 6.5-ft and 9-ft. Figure 2.6 shows the stress–strain plot for 

these two lap splice lengths for a typical bridge column layout used in Georgia. This column has 

a height of 18-ft and cross-sectional dimensions of 3-ft by 3-ft. The transverse reinforcement 

spacing is 12-in. 

 

Figure 2.6 – Lap Splice Stress–Strain Plot for Commonly Used 

Splice Lengths of 6.5-ft and 9-ft in Georgia. 

Figure 2.7 also shows the impact of the lap splice lengths ranging from 4-ft to 14-ft. on the 

peak stress and residual stress of the lap splice of the same column. Interestingly, the peak stress 

is not affected by the change in length of the spliced section. On the other hand, the residual stress 
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shows a steep increase as the length of the lap splice increases. For this column configuration, the 

residual strength of the spliced section matches the peak strength at about a lap splice length of 

11-ft. Note that 𝑓𝑦𝑠 is yield strength of steel. 

 

Figure 2.7 – Effect of Change in Lap Splice Length on 

Peak and Residual Stress of Spliced Section. 

2.4.2 Effect of Transverse Reinforcement 

 Hamad and Najjar have documented the effects of transverse reinforcement on a 

spliced section through experimental tests [22]. Their research revealed that the presence of 

adequate transverse reinforcement helps reduce cracking along the lap splice length, significantly 

improving the ductility of the columns. This is in agreement with the findings of many other 

researchers who used experimental results to assess the effect of confinement on lap splices 

[24,34].  

Adequate transverse reinforcement spacing not only helps to confine the core concrete in 

a structural member but also allows the lap splice section to develop enough shear friction after its 

strength goes past the peak strength. This effect depends on the type (such as hoops, spiral, or ties) 

and shape (such as circular, square, or rectangular) of confining transverse reinforcement. To 
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model the effect of confinement on concrete, a widely accepted stress–strain model of concrete 

formulated by Mander et al. is used in this study [35]. The effect of confinement on the post-peak 

lap splice strength is evaluated using Equation 4.  

Before the introduction of the AASHTO LRFD Bridge Design Specifications [1] into the 

GDOT manual [4], the most commonly used reinforcement spacing for Georgia bridge columns 

was 12-in. (see Figure 2.8). However, the latest seismic design provisions suggest that the 

transverse spacing should not exceed one-quarter of the minimum member dimension or 4-in. 

center-to-center. In the present study, the effect of transverse reinforcement spacing is studied for 

the lap splice length of 6.5-ft. The column reinforcement detailing for this case is as it was in 

Section 2.4.1. 

 

Figure 2.8 – Lap Splice Stress–Strain Plot for Commonly Used 

Transverse Spacing of 12-in. in Georgia. 

Figure 2.9 depicts the effect of transverse spacing on the lap splice behavior. Similar to the 

effect of the lap splice length, the peak strength is not affected by the change in transverse 

reinforcement spacing. On the other hand, the residual strength of the lap splice drops considerably 

as the transverse reinforcement spacing exceeds about 5.5-in. for this cross section.  
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Figure 2.9 – Effect of Change in Transverse Reinforcement Spacing 

on Peak and Residual Stress of Spliced Section. 

2.4.3 Effect of Steel Yield Strength 

According to Equation 4, the steel yield strength plays an important role in development 

of the bond between the steel rebars and the surrounding concrete. The steel strength governs the 

level of forces that can be transferred through the steel–concrete interface in a spliced section. 

Moreover, the stress–strain curve of the steel reinforcement also governs the bond slip and strength 

characteristics, which can lead to splitting and shear failures.  

The commonly used longitudinal steel rebars in Georgia bridge columns have yield 

strengths of either 40 ksi or 60 ksi. Figure 2.10 shows the variation of stress and strain for varying 

yield strengths. 
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Figure 2.10 – Lap Splice Stress–Strain Plot for 

Commonly Used Steels in Georgia. 

2.4.4 Effect of Rebar Diameter 

In addition to the yield strength, the diameter of the reinforcement bars also affects the 

stress–strain curve of a spliced section. The ratio of cross-sectional to surface area of the rebar is 

directly proportional to the diameter of the rebar. This ratio impacts the bond stress concentration 

in the rebar. 

The most commonly used rebar size for Georgia bridges is #11. Figure 2.11 shows the 

stress–strain curve for a typical Georgia column when 12 equally spaced #11 rebars are used as 

longitudinal reinforcement. 
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Figure 2.11 – Lap Splice Stress–Strain Plot for 

Commonly Used #11 Rebar in Georgia. 

Additionally, Figure 2.12 shows the effect of the rebar diameter on the lap splice. Larger 

diameters for spliced sections show a steep reduction in residual stress that could lead to ductility 

degradation of the structural member. The steep reduction in the post-peak strength is due to larger 

bond stress concentrations resulting from a greater cross-section area to surface area ratio for larger 

diameter rebars.  

 

Figure 2.12 – Effect of Change in Longitudinal Rebar Diameter on 

Peak and Residual Stress of Spliced Section. 
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2.5 Effects of Transverse Reinforcement on Concrete and Reinforcement 

The provisions 5.10.11.4.1d and e in the 2014 AASHTO LRFD Bridge Design 

Specifications [1] specify that the cores of columns and pile bents must be confined by transverse 

reinforcement in the expected plastic hinge regions. The spacing of the transverse reinforcement 

must be taken as specified in provision 5.10.11.4.1e. The main function of the transverse 

reinforcement specified in these provisions is: (1) to ensure that the axial load carried by the 

column after spalling of the concrete cover will at least equal the load carried before spalling, and 

(2) to ensure that buckling of the longitudinal reinforcement is prevented. 

In this section, seismic-designed columns (#5 bars @ 4-in. o.c. transverse reinforcement) 

are compared to non-seismic-designed columns (#4 bars @ 12-in. o.c. transverse reinforcement), 

in both square and circular configurations. The columns used are based on typical Georgia bridges, 

using a concrete strength of 3500 psi and steel yield strength of 60,000 psi. Column details are 

shown in Figure 2.13, and all columns are 192-in. (16-ft) in height.  
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Figure 2.13 – Typical GA Columns with 4-in. vs. 12-in. Spacings. 

First, a material analysis was performed, as shown in Figure 2.14. Confinement provided 

by the transverse reinforcement is clearly represented, and circular sections show better 

confinement than squared sections, as expected. The impact of the transverse reinforcement 

spacing on the longitudinal steel’s buckling behavior on the compression side is evident. 

Additional analyses comparing performance of columns with various transverse reinforcement 

spacings in the plastic hinges, including #3 @ 3-in., #6 @ 4-in., and #6 @ 6-in., are presented in 

Chapter 7. 
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(a) (b) 

Figure 2.14 – Effects of Various Transverse Reinforcement Spacing on  

(a) Concrete, and (b) Longitudinal Reinforcement Models. 
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CHAPTER 3 GEORGIA SEISMIC HAZARD MAPS AND BRIDGE 

INVENTORY ANALYSIS 

To assess the impact of the LRFD Seismic Bridge Design Specifications in Georgia, it is 

important to determine the potential hazard associated with earthquakes in different parts of the 

state. Seismic Design Response Spectra and seismic maps based on five site classes, A through E, 

are developed in this chapter. Additionally, a thorough bridge inventory is conducted to determine 

the key bridge types to study. This chapter provides an analysis of the bridge inventory for the 

state of Georgia based on the National Bridge Inventory (NBI) database and specific bridge plans 

provided by GDOT.  

 

3.1 Georgia Design Response Spectrum and Seismic Zones 

Natural hazards can impose severe demands on any type of structure. Seismic detailing has 

the potential to decrease the probability of damage due to earthquakes during a structure’s service 

life. Hence, design codes and specifications are being continually revised and updated to 

incorporate any new information gained from experience, research, etc. Bridges should have 

considerable ductility and deformability to resist earthquake forces. With the idea of performance-

based earthquake engineering (PBEE), the latest AASHTO LRFD Bridge Design Specifications 

[1] recommend that bridges should be designed using displacement-based rather than force-based 

procedures. PBEE methodology aims at assuring that a desired level of structural performance 

with definable levels of reliability is achieved when it is subjected to various levels of seismic 

input. The performance of the structure is measured in terms of engineering demand parameters 
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(EDPs) such as curvature ductility, displacement, and drift ratio. In this study, such EDPs are 

employed to measure the damage of various components of the bridge. 

Bridges that are in accordance with the LRFD provisions are expected to resist low to 

moderate seismic loads. In the event of high seismic loads, bridges are expected to suffer 

significant damage; however, they should have a low probability of collapse. Keeping this 

performance objective in mind, seismic hazard is defined based on a 1000-year design return 

period earthquake, which corresponds to 7% probability of exceedance in 75 years. 

The AASHTO LRFD Bridge Design Specifications [1] require that the seismic hazard at a 

location be characterized based on the acceleration spectrum of the location and relevant site 

factors. There are two procedures for determining the acceleration spectrum given in the code: 

a) General Procedure, and b) Site-Specific Procedure. The specification lists four conditions as to 

when the Site-Specific Procedure must be followed. However, as this study focuses on an overall 

analysis of bridges across the state of Georgia, the General Procedure is followed. 

The General Procedure uses the peak ground acceleration coefficient, 𝑃𝐺𝐴; short-period 

spectral acceleration, 𝑆𝑆; and long-period spectral acceleration, 𝑆1, to establish the design spectral 

acceleration curve. These coefficients can be obtained from the seismic design hazard maps 

developed by United States Geological Survey (USGS) for the 2007 AASHTO Specifications. For 

the state of Georgia, the maps for obtaining the ground acceleration coefficient, and short-period 

and long period accelerations are shown in Figure 3.1. These coefficients are only valid for rock 

site conditions (Site Class B), which is taken as the reference site class in the specification. 

Different site class adjustment factors are provided to account for the effects of other site classes. 
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All of these coefficients are in accordance with performance based on a 1000-year return period 

and consider performance-based design objectives.  

 

(a) 

 

(b) 

 

 

(c) 

Figure 3.1 – Map of Georgia Depicting Contour Lines for Seismic Site Class B for 

(a) Horizontal PGA Coefficient; (b) Horizontal Response Spectral Acceleration Coefficient 

at Period 0.2 Seconds (SS); and (c) Horizontal Response Spectral Acceleration Coefficient 

at Period 1.0 Second (S1) [1]. 

The surrounding soil type can have a significant impact on the forces that are transmitted 

to a structure. To incorporate the site conditions, the specification classifies a site as A through F, 

per the site class definitions. These site class definitions are based on the type of soil and average 
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shear wave for the upper 100-ft of the soil profile. Site adjustment factors,  𝐹𝑃𝐺𝐴  (for 𝑃𝐺𝐴) in 

Table 3-1, 𝐹𝑎 (for 𝑆𝑆) in Table 3-2, and 𝐹𝑣 (for 𝑆1) in Table 3-3, are used to determine the site-

specific acceleration spectrum coefficients, 𝐴𝑆, 𝑆𝐷𝑆, and 𝑆𝐷1, respectively. These coefficients are 

then used to plot the design spectral acceleration curve for a region as per Figure 3.2. 

 

Figure 3.2 – Design Response Spectrum [1]. 

Table 3-1 – Values of Site Factor, FPGA, at Zero Period on Acceleration Spectrum [1]. 

Site Class 
Peak Ground Acceleration Coefficient 

PGA < 0.10 PGA = 0.20 PGA = 0.30 PGA = 0.40 PGA =0.50 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.2 1.2 1.1 1.0 1.0 

D 1.6 1.4 1.2 1.1 1.0 

E 2.5 1.7 1.2 0.9 0.9 
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Table 3-2 – Values of Site Factor, Fa, for Short Period Range of Acceleration Spectrum [1]. 

Site Class 
Spectral Acceleration Coefficient at Period 0.2 second 

SS < 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS > 1.25 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.2 1.2 1.1 1.0 1.0 

D 1.6 1.4 1.2 1.1 1.0 

E 2.5 1.7 1.2 0.9 0.9 

 

Table 3-3 – Values of Site Factor, Fv, for Long Period Range of Acceleration Spectrum [1]. 

Site Class 
Spectral Acceleration Coefficient at Period 1.0 second 

S1 < 0.10 S1 = 0.20 S1 = 0.30 S1 = 0.40 S1 > 0.50 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.7 1.6 1.5 1.4 1.3 

D 2.4 2.0 1.8 1.6 1.5 

E 3.5 3.2 2.8 2.4 2.4 

 

In the present study, Site Classes A to E are examined and the design response spectra for 

these site classes, using the above-mentioned coefficients, are shown in Figure 3.3. Note 𝑆𝑎 is 

spectral acceleration in units of gravitational acceleration g. All site classes except Site Class F are 

considered to account for any data collected on soil properties in Georgia. Site Class F requires 

site-specific investigations to determine the influence of the local site conditions on the structure 

and a site-specific procedure to determine the design acceleration response spectrum, which were 

outside the scope of this study.  
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Figure 3.3 – Georgia Design Response Spectra for 

Site Classes A, B, C, D, and E. 

To estimate the seismic vulnerability of highway bridges in Georgia, an appropriate suite 

of ground motions is essential. Due to unavailability of historic ground motion records, particularly 

at the intensities required for this research, previous studies have used artificially generated ground 

motions to study earthquakes in the central and southeastern United States (CSUS). Nielson [8] 

used Rix and Fernandez-Leon [36] to provide ground motion suites to determine seismic 

vulnerability of highway bridges in the CSUS. Because Georgia falls in the CSUS region, a suite 

of 48 Rix and Fernandez-Leon ground motions are used to assess the seismic vulnerability of 

bridges in this study. Figure 3.4 shows a plot of the spectral acceleration values for a range of 

structural time periods obtained from these 48 ground motions. 
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Figure 3.4 – Spectral Acceleration Plot for a Range of Time Periods 

for the 48 Rix and Fernandez-Leon Ground Motion Suite. 

As performance is the main criterion to be followed while designing a bridge using a PBEE 

methodology, the code suggests classifying the region under study into seismic zones. While 

designing a bridge for earthquake effects, these zones help the designer determine the type of 

analysis, detailing requirements, etc., to be used for the bridge. The greater the zone number, the 

more rigorous the design should be. Table 3-4 shows the boundaries that are used to define these 

zones; these boundaries are based on the design spectral acceleration coefficient at 1 second, 𝑆𝐷1. 

Although the LRFD code specifies only four zones, Seismic Zone 1 is subdivided into two 

subzones, Seismic Zones 1-A and 1-B, for this study based on recommendations by GDOT. 

Table 3-4 – Seismic Zone Boundaries. 

Seismic Zone Acceleration Coefficient Range 

1-A 𝑆𝐷1 < 0.10 

1-B 0.10 ≤ 𝑆𝐷1 < 0.15 

2 0.15 ≤ 𝑆𝐷1 < 0.30 

3 0.30 ≤ 𝑆𝐷1 < 0.50 

4 𝑆𝐷1 ≥ 0.50 
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As these zone definitions are based on 𝑆𝐷1, they incorporate the local seismic and site effects. 

Therefore, a site with rocky site conditions might fall under a different seismic zone than a nearby 

site that has soft soil conditions. This concept is elaborated on in the next section, which presents 

the seismic zone maps for all the site classes for Georgia. 

3.2 Georgia Site-Specific Seismic Hazard Maps 

Seismic hazard maps are helpful to determine the predicted level of ground motion 

excitation for a region in consideration. In the present study, the state of Georgia is divided into 

six regions, as shown in Figure 3.5, based on the expected maximum PGA intensity. The northern 

region of the state is most susceptible to higher intensity earthquakes.  

 

Figure 3.5 – Map of Georgia Showing 

Six Regions Considered in the Study. 

3.2.1 Site Class A Seismic Hazard Map 

Site Class A is characterized by very hard rock site conditions where the average shear 

seismic wave velocity is greater than 5000 ft/sec. The seismic hazard map for this site class for 
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Georgia is shown in Figure 3.6. The maximum earthquake intensity level for Site Class A is 0.13 g. 

Hard rocky sites result in large attenuation distances and allow earthquake waves to spread over a 

vast region, depending on the intensity. The seismic intensity is the lowest compared to the other 

site classes. Because of the low seismic hazard level, the whole state falls under Seismic Zone 1-A. 

 

 

Figure 3.6 – Georgia Seismic Hazard Map for Site Class A. 

3.2.2 Site Class B Seismic Hazard Map 

 Site Class B is characterized by softer rock site conditions than Site Class A with 

an average seismic wave velocity between 2500 and 5000 ft/sec. As Shown in Figure 3.7, the entire 

state falls under Seismic Zone 1-A and does not require consideration of rigorous seismic detailing 

for design. The maximum PGA for Site Class B is 0.16 g. 
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Figure 3.7 – Georgia Seismic Hazard Map for Site Class B. 

3.2.3 Site Class C Seismic Hazard Map 

Site Class C is characterized by very dense soil or rock where the average shear wave 

velocity ranges from 600 to 1200 ft/sec. The maximum PGA range for different regions for this 

site class is 0.05 g to 0.19 g. As depicted in Figure 3.8, Regions 1 and 2 fall in Seismic Zone 1-B 

for Site Class C, whereas the rest of the state still falls in Seismic Zone 1-A. 

 

 

Figure 3.8 – Georgia Seismic Hazard Map for Site Class C. 

3.2.4 Site Class D Seismic Hazard Map 

Site Class D has softer soil site class conditions compared to Site Class C, leading to 

amplification of seismic waves, and is characterized by average shear velocity less than 600 ft/sec. 
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Figure 3.9 shows the seismic hazard map for Georgia for Site Class D. The seismic zone intensity 

increases from the southern to the northern parts of the state with maximum PGA equal to 0.24 g. 

 

 

Figure 3.9 – Georgia Seismic Hazard Map for Site Class D. 

3.2.5 Site Class E Seismic Hazard Map 

Site Class E site conditions are known to be highly reactive to seismic ground motions. 

The soil composition at these sites mainly consists of clayey or other type of soft soils. Such soils 

are susceptible to high moisture changes, allowing amplification of the ground motion. The seismic 

hazard map for Georgia for Site Class E is shown in Figure 3.10. Most of the state falls under 

Seismic Zone 2 for this site class, with the maximum PGA being 0.35 g in Region 1. 

 

 

Figure 3.10 – Georgia Seismic Hazard Map for Site Class E. 
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3.3 Georgia Highway Bridge Inventory Analysis 

With 9514 bridges in Georgia, it is computationally infeasible to model and conduct a full 

detailed analysis of each bridge to obtain a fragility curve and assess its seismic vulnerability. 

Therefore, bridges are grouped into various classes for analysis. Nielson used this approach to 

classify bridges based on the type of construction and materials used in the bridges [8]. The present 

study applies such a classification. It is assumed that bridges within a bridge class behave in a 

similar way during an earthquake event. Therefore, fragility curves are generated for bridge classes 

rather than individual bridges. 

The National Bridge Inventory database (NBI), maintained by the Federal Highway 

Administration (FHWA) [37], records the information about all highway structures in the United 

States. The NBI database provides basic information of 15,122 highway structures in Georgia. 

Many of these structures are tunnels and culverts, which are assumed to represent a different type 

of system and therefore, not considered in this study. For the remaining 9514 bridges, a preliminary 

statistical distribution analysis using two key NBI fields (i.e., material and construction type) was 

performed to determine a general classification of the inventory. Although detailed bridge 

characteristics must be studied from the individual bridge plans, the database provides important 

characteristics such as material type, dimensions, number of spans, skew angle, structural rating, 

etc. 

Table 3-5 shows the distribution of bridges in Georgia based on the construction material 

type listed in the NBI database [37]. The construction material used in Georgia is predominantly 

concrete, followed by steel. Similarly, Table 3-6 shows the distribution of bridges in Georgia based 

on construction types listed in the NBI database [37]. 
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Table 3-5 – Georgia Highway Bridges Classified by Construction Material [37]. 

Construction Materials Number of Bridges Percentage 

Concrete 3,227 33.9 

Concrete Continuous 124 1.3 

Steel 2,501 26.3 

Steel Continuous 1,101 11.6 

Prestressed Concrete 2,321 24.4 

Prestressed Concrete Continuous 116 1.2 

Wood or Timber 118 1.2 

Masonry 3 0.0 

Aluminum, Wrought Iron, or Cast Iron 1 0.0 

Other 2 0.0 

 

Table 3-6 – Georgia Highway Bridges Classified by Construction Type [37]. 

Construction Type Number of Bridges Percentage 

Slab 1,135 11.9 

Stringer/Multi-beam or Girder 5,646 59.3 

Girder and Floor Beam System 63 0.7 

Tee Beam 2,123 22.3 

Box Beam or Girders – Multiple 230 2.4 

Box Beam or Girders – Single or Spread 131 1.4 

Frame (Culverts Excluded) 24 0.3 

Truss – Thru 51 0.5 

Arch – Deck 55 0.6 

Others 95 0.6 

 

After examination of the NBI database, the research team assigned all the bridges in 

Georgia to one of seven bridge classes, as given in Table 3-7. The bridges grouped within each 

class typically would have similar responses to a seismic excitation. Multi-span simply supported 
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concrete bridges is the most common bridge class in Georgia and represents about 41.03% of 

bridges in the state. As this study focuses on the impact of seismic transverse spacing and lap 

splices in bridge columns, only multi-span bridges have been considered hereafter.  

Table 3-7 – Georgia Bridge Classes and Their Proportions [37]. 

Bridge Class Abbreviation Number Percentage 

Multi-Span Continuous Steel Girder MSC Steel 1,065 11.9 

Multi-Span Simply Supported Concrete Girder MSSS Concrete 3,904 41.03 

Multi-Span Simply Supported Steel Girder MSSS Steel 1,516 15.93 

Multi-Span Simply Supported Slab MSSS Slab 951 10.00 

Single-Span Concrete Girder SS Concrete 362 3.80 

Single-Span Steel Girder SS Steel 721 7.58 

Other Other 995 10.46 

 

3.3.1 Bridge Class Statistics 

With the bridge classes defined, an examination of key bridge characteristics is necessary 

to select a representative bridge from each bridge class. Although the NBI database provides the 

basic bridge characteristics for bridges, detailed information of the representative bridge from each 

bridge class is obtained from the bridge plans. This step is necessary to generate accurate finite 

element models of the bridges. The following characteristics, obtained from the NBI database, 

provide insight into the typical geometric configuration of bridges in each of the four multi-span 

bridge classes considered: 

 Number of spans (presented in Table 3-8) 

 Maximum span length (presented in Table 3-9) 

 Deck width (presented in Table 3-10) 

 Minimum vertical deck width (presented in Table 3-11) 
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The mode for number of spans for most of the bridge classes in Georgia is 3. Hence, to be able to 

compare the results across the bridge classes, this study considers only 3-span bridges for each 

bridge class. Other parameters are chosen as close to the median values of the bridge class 

depending on the availability of bridge plans. 

Table 3-8 – Span Number Statistics for the Four Bridge Classes. 

Bridge Class Mean Standard Deviation Median Maximum Minimum Mode 

MSC Steel 4.57 3.72 4 41 2 4  

MSSS Concrete 5.17 4.49 4 89 2 3  

MSSS Steel 3.97 2.27 3 40 2 3  

MSSS Slab 5.95 4.16 5 56 2 3  

 

Table 3-9 – Maximum Span Length (ft.) Statistics for the Four Bridge Classes. 

Bridge Class Mean Standard Deviation Median Maximum Minimum Mode 

MSC Steel 82.22 45.87 83 280 10 27 

MSSS Concrete 56.16 30.98 40 187 12 40 

MSSS Steel 56.68 28.64 55 252 9 16 

MSSS Slab 20.56 5.22 20 88 12 20 

 

Table 3-10 – Deck Width (in.) Statistics for the Four Bridge Classes. 

Bridge Class Mean Standard Deviation Median Maximum Minimum Mode 

MSC Steel 48.96 31.50 34.70 221.20 10.60 34.00 

MSSS Concrete 47.18 25.47 41.30 522.40 12.40 41.30 

MSSS Steel 47.28 33.89 34.30 220.10 8.00 25.20 

MSSS Slab 28.12 6.69 25.80 96.00 12.00 25.20 

 



41 

 

Table 3-11 – Minimum Vertical Deck Width (in.) Statistics for the Four Bridge Classes. 

Bridge Class Mean Standard Deviation Median Maximum Minimum Mode 

MSC Steel 17.62 3.10 16.11 42.09 10.06 16.07 

MSSS Concrete 20.48 5.27 19.06 75.01 0.99 16.07 

MSSS Steel 18.95 3.70 17.06 43.10 10.08 16.05 

MSSS Slab 17.46 3.90 18.07 23.02 10.05 16.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

CHAPTER 4 OVERVIEW OF FRAGILITY CURVES 

In recent decades, fragility curves have become an important statistical tool to quantify the 

potential damage in a structure due to hazards. The first section of this chapter presents the general 

formulation used in this study to develop the fragility curves. The following sections address the 

limit states and the probabilistic seismic demand model. 

 

4.1 Analytical Fragility Curve Formulation  

A fragility function, 𝐹, represents the probability of the demand meeting or exceeding a 

predefined capacity limit state, given the intensity measure of the hazard. Mathematically, the 

fragility function can be expressed in terms of a conditional probability as: 

 𝐹 = 𝑃[𝐷 − 𝐶 ≥ 0|𝐼𝑀 = 𝑦] (7) 

where 𝐷 is the demand of the structural component, 𝐶 is the capacity of the component, 𝐼𝑀 is the 

intensity measure of the hazard, and 𝑦 is the realization of the hazard intensity. If fragility functions 

are calculated and plotted over a range of realizations of the chosen intensity measure, they yield 

a fragility curve. Figure 4.1 shows one such fragility curve obtained for a specified limit state. On 

the x-axis, this curve represents the considered intensity measure, and on the y-axis, it shows the 

associated risk. The intensity measure used to evaluate the fragility function in this study is peak 

ground acceleration. 
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Figure 4.1 – Typical Fragility Curve. 

There are three main methods to formulate fragility curves: (1) expert-based, (2) empirical, 

and (3) analytical. These methods can be combined to obtain more accurate fragility estimation. 

In fact, the multi-hazard risk analysis tool distributed by the Federal Emergency Management 

Agency (FEMA), HAZUS-MH, uses this kind of a hybrid approach to determine hazard risk 

analysis of structures [38]. Another way of obtaining more robust fragility functions is to use 

advanced statistical techniques, such as Bayesian updating, to combine analytical results obtained 

from computer simulations and field inspection results. With advancement in structural health 

monitoring, such hybrid techniques are generally preferred for research purposes. 

Expert-based fragility curves were used to estimate the expected behavior of highway 

bridges in California due to data shortage [39]. This method is no longer popular to quantify 

fragility functions as there is a high level of uncertainty involved due to subjectivity of the 

procedure.  

Empirical fragility curves rely on the post-hazard assessment of the structure to simulate 

the demand model. Many researchers used this methodology to formulate fragility functions after 

the Loma Prieta and Northridge earthquakes [40–42]. This method relies on evaluating fragility 
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functions through collection of binary pass/fail data from experts for the failure of a structure after 

the hazard. One could argue that this method should be the most highly favored to estimate damage 

risk, as the risk is derived from observations of the performance of the structure in the field. 

However, the major drawback of this method is that it requires an adequate number of structures 

from a bridge class to quantify the fragility functions. In practice, these data are limited. Moreover, 

as with the expert-based method, there could be a high level of subjectivity in the post-hazard 

inspection data, as well.  

With computational improvements over the past few decades, analytical fragility curves 

have become a widespread way to formulate fragility functions. When bridge inspection or ground 

motion data are not available, numerical simulations are used to quantify the capacity and/or 

demand of the structure in consideration. Typically, the capacity of the structural component is 

determined based on experimental tests or its geometric interpretation, and the demand imposed 

on the component during a hazard is computed through computer simulations. Building an accurate 

finite element model of the structure and selecting appropriate ground motions are some of the 

important steps involved in this method.  

4.1.1 Component-Level Fragility Curves 

An analytical fragility approach is used to estimate the fragility functions for structural 

components. Due to the variabilities involved, such as geometry, hazard, etc., the capacity and 

demand models are random variables, rather than deterministic values. If both component capacity 

and demand models are assumed to follow a lognormal distribution, by the application of the 

central limit theorem, Equation 7 can be expressed as a lognormal cumulative distribution function 

in terms of the parameters of the capacity and demand variables as follows: 
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𝐹 = Φ (

ln 𝑆𝑑/𝑆𝑐

√𝛽𝑑
2 + 𝛽𝑐

2
) (8) 

Where Φ(∙) is the standard normal cumulative distribution function, 𝑆𝑑 is the median parameter 

of the demand random variable,  𝛽𝑑 is the lognormal standard deviation of the demand random 

variable, 𝑆𝑐  is the median parameter of the capacity random variable, and  𝛽𝑐  is the lognormal 

standard deviation of the capacity random variable. All of these parameters are defined at each 

intensity level for which damage fragility is to be determined. From Equation 8, the parameters of 

the capacity and demand random variables are needed to estimate the fragility function. The 

techniques used to define these parameters in the function are described in following sections. 

4.1.2 System-Level Fragility Curves 

Component-level fragility curves can be helpful to determine the most vulnerable links in 

an overall system. They can also be used to determine appropriate retrofit strategies and component 

life-cycle cost analyses. However, these curves do not provide information about the vulnerability 

of the full structure. One component could be more susceptible to a ground motion than another 

when a complete structure is analyzed. To assess the vulnerability of the structure, the component-

level curves must be combined to derive the system-level fragility curves. Under the assumption 

that the system behaves as a series system, wherein the failure of one component results in the 

failure of the whole system, these curves can be combined to determine the system-level 

vulnerability. This assumption has been used by many researchers in the past [8,43]. Either closed-

form solutions or numerical solutions can be used to find the system fragility function depending 

on the number of components and complexity of the failure domains. 
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In this study, a numerical Monte Carlo simulation approach is used to combine the 

component-level fragility curves. This process involves generating 𝑁 random samples from both 

capacity and demand variable distributions. While generating the samples from the capacity side, 

the correlation between the limit states is assumed to be equal to 1 to ensure that the numerical 

samples from each limit state rank in the same order that the limit states are defined. While 

generating the samples from the demand side, correlations between the bridge components must 

be incorporated into sampling. After generating the samples, each sample from the demand and 

capacity side are paired with each other. The paired samples are compared one-to-one to evaluate 

the failure. If the sample from the limit state side is less than the sample from the demand side, the 

system is considered to have failed. Following this definition of failure, an indicator function is 

defined to track the number of failed samples as follows: 

 

𝐼𝑓 = {
1          if (𝑥𝑖 , 𝑥𝑗)  ∈  𝐹𝑖𝑗

 
0          if (𝑥𝑖 , 𝑥𝑗)  ∉  𝐹𝑖𝑗

 (9) 

where 𝑥𝑖 and 𝑥𝑗 are the realization of the ith and jth distributions and 𝐹𝑖𝑗 is defined by the ith and jth 

limit state. 

The indicator function can now be evaluated at equal intervals of a reasonable range of the 

intensity measure. At each value of the intensity measure, the failure probability can be estimated 

as:  

 
𝑃[𝐿𝑆|𝐼𝑀 = 𝑦] =

∑ 𝐼𝑓𝑖

𝑁
𝑖=1

𝑁
 (10) 
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Note that 𝑁 is number of random sample generated from capacity and demand distributions. It is 

important to determine a reasonable number of samples to obtain an accurate probability of failure. 

The results from the sensitivity analysis of the variation of the failure probabilities were plotted 

with respect to number of samples. Approximately 150,000 samples are enough to stabilize the 

probability estimates.  

4.2 Limit States 

As stated in Section 4.1, limit state definitions are required to evaluate the fragility 

functions. In this study, the limit states of each component are based on either past experimental 

results or functional interpretation of the component. Engineering Demand Parameters (EDPs) 

such as displacement, curvature ductility, drift ratio, etc., have been used by researchers to define 

the limit states of columns. This is in accordance with the performance-based seismic design 

philosophy in the latest AASHTO LRFD Bridge Design Specifications [1]. These limit states are 

defined for four damage levels: (1) slight, (2) moderate, (3) extensive, and (4) complete. Table 4-1 

describes the definitions adopted for each limit state from HAZUS-MH [38]. Each limit state is 

assumed to follow a lognormal distribution with the parameters of the distribution obtained from 

experimental data or past research. 
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Table 4-1 – HAZUS’ Qualitative Limit States [38]. 

Limit State Description 

Slight Initial yielding in longitudinal rebars, cracking in column 

surfaces, minor cracking in plastic hinge regions. 

Moderate Minor spalling at column faces, shear cracks in columns, pile 

cap damage. 

Extensive Cracks exposing column core; shear failure of columns; 

flexural failure due to inadequate confinement, anchorage or 

lap splice; vertical pull of longitudinal reinforcement; ground 

displacement at column base. 

Complete Buckling of longitudinal rebars, vertical or lap splice failure, 

column collapse. 

 

The following paragraphs provide descriptions of these limit states for each bridge 

component considered in the study. Although, in practice, the limit states are expected to vary with 

the service life of a structure due to aging, corrosion, deterioration, etc., such factors are not 

considered in this study. Therefore, the limit states are assumed to be constant throughout the 

service life of the bridge.  

Static pushover tests on columns can be used to determine the force-deflection curves and 

column damage in terms of EDPs. Since the curvature of a structural member is a property of a 

cross section and is independent of the length of the member, the chosen EDP for this study is 

curvature ductility. The curvature ductility, 𝜇∅, of a structural member is defined as: 

 𝜇∅ =
𝜅𝑚𝑎𝑥

𝜅𝑦𝑖𝑒𝑙𝑑
 (11) 
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where 𝜅𝑚𝑎𝑥 is the maximum curvature observed in the column under seismic shaking, and 𝜅𝑦𝑖𝑒𝑙𝑑 

is the column yield curvature. 

In the present study, the following three cases corresponding to non-seismic and seismic 

lap splice and transverse reinforcement spacing requirements are considered: 

1. No Lap Splice with Non-Seismic Detailing: The lap splice is not provided at the base of 

the column and a non-seismic transverse reinforcement spacing of 12-in. is used. 

2. Lap Splice with Non-Seismic Detailing: The lap splice is provided at the base of the 

column with transverse reinforcement spacing equal to 12-in.  

3. Lap Splice with Seismic Detailing: The lap splice is provided at the base of the column 

with transverse reinforcement spacing equal to 3-in. 

The moment–curvature ductility plots along with the corresponding column limit states for 

the above-mentioned three cases are shown in Figure 4.2. The column capacities in terms of 

curvature ductility are adopted from previous experimental test results [18, 44–48] that 

characterize four limit states characterized by slight, moderate, extensive, and complete damage. 

Slight damage corresponds to the curvature ductility at the first point of yield in the longitudinal 

rebar. Moderate damage corresponds to the spalling of cover concrete due to expansive force. 

Extensive damage corresponds to the exposure of concrete core or yielding of transverse 

reinforcement, whichever happens first. Complete damage corresponds to the lap splice failure in 

the case of the lap splice column, or longitudinal rebar buckling in the no lap splice case. 

For the three cases of column seismic design considered in this study, the column limit 

states are presented in Table 4-2. It is assumed that the reduction of transverse reinforcement does 
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not significantly affect the column capacity. Hence, for the seismic and non-seismic cases, the 

same limit state values have been assumed. 

  

(a) (b) 

 

(c) 

Figure 4.2 – Moment–Curvature Ductility Curves and Limit States for (a) Column with No 

Lap Splice and Non-Seismic Transverse Detailing; (b) Column with Lap Splice and Non-

Seismic Transverse Detailing; and (c) Column with Lap Splice and Seismic Transverse 

Detailing. 

 

 

 



51 

 

Table 4-2 – Limit State Median Values for Lap-Spliced Column Sections. 

Case Description Slight Moderate Extensive Complete 

1 No Lap Splice & Non-Seismic Detailing 1.64 5.88 13.47 17.13 

2 Lap Splice & Non-Seismic Detailing 1.00 2.93 4.85 8.71 

3 Lap Splice & Seismic Detailing 1.64 5.88 13.47 17.13 

 

4.3 Probabilistic Seismic Demand Model 

In addition to limit states, demand estimates are required to quantify the fragility functions 

of components. Probabilistic seismic demand models (PSDMs) obtained from analytical seismic 

analyses of the structure are used for this purpose. PSDMs evaluate the peak structural demand of 

a component as a function of intensity of ground motions. In this study, the PSDM model is 

obtained from nonlinear time history analyses by running the suite of 48 ground motions to 

consider the uncertainty in the structural response. The data points for the peak demands of the 

components obtained from the nonlinear time history analysis are plotted against the value of 

PGAs of that ground motion.  

Cornell et al. [49] suggested a power function model relation to estimate the median 

demand from PSDM using the following relation: 

 𝐸𝐷𝑃 = 𝑎 𝐼𝑀𝑏 (12) 

where EDP stands for Engineering Demand Parameters, and it refers to median demand in this 

equation, 𝑎 and b are the coefficients obtained from the linear regression analysis of the model. 

To calculate these coefficients, the demand model is transformed into linear space by taking the 

logarithm of both sides of Equation 12 to obtain the following equation: 
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 ln(𝐸𝐷𝑃) = ln(𝑎) + 𝑏 ∗ 𝑙𝑛(𝐼𝑀) (13) 

As stated before, the demand variable is assumed to follow a lognormal distribution in the study. 

It therefore follows a normal distribution in linear space, with a mean equal to zero and a constant 

standard deviation, 𝜎.  
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CHAPTER 5 MODELING AND DETERMINISTIC 

SEISMIC BRIDGE ANALYSES 

This chapter presents bridge characteristics and modeling details that are employed to 

generate three-dimensional (3-D) finite element models of the representative bridges from each 

multi-span bridge class in Georgia considered in this study. These 3-D models are useful to 

evaluate the expected seismic performance of bridges. The lap splice model, as explained in 

Chapter 2, is incorporated into the analytical bridge models to compare their expected seismic 

performance for different detailing cases. Column and bearing responses from deterministic bridge 

analyses performed using a single ground motion are studied to assess the performance degradation 

due to inadequate lap splice lengths and confining reinforcement. As described in Chapter 1, the 

analytical fragility curve methodology requires the demand parameters be obtained from these 

analytical bridge models. This chapter further explains the seismic response of various bridge 

components obtained from a deterministic nonlinear time history analysis. 

 

5.1 Typical Highway Bridge Components 

The typical bridge model used in this study is based on Nielson [8], who conducted research 

on fragility functions for highway bridges in the CSUS. The most important bridge components 

for a highway bridge are depicted in Figure 5.1 and can be categorized as follows: 

 Superstructure: The components of a bridge that directly receive the live load compose 

the superstructure. These components typically consist of bridge girders, deck, parapet, 

etc. In this study, it is assumed that the bridge superstructure remains within the linear 
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range during an earthquake event. Therefore, its nonlinear properties are not 

considered. 

 Substructure: These are the components that support the bridge and transfer the load 

from the superstructure and substructure to the surrounding soil. The substructure 

comprises bents, columns, foundations, and abutments. 

 Bearings: Bearings are mechanical devices that allow for the interaction between the 

substructure and superstructure so that the load from the superstructure can be 

transferred to the substructure. 

 

 

Figure 5.1 – Typical Bridge Configuration. 

The 3-D analytical models are generated using the open source finite element package 

OpenSees [50]. This package is preferred for the study as it permits users a flexibility to generate 

components with a great degree of accuracy and to evaluate the response of bridge components in 

detail. The response at the component level is studied in the transverse and longitudinal directions 

and combined using the square root of the sum of square roots technique (SRSS). The major 

Superstructure 
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components studied are columns and bearings. The following subsections outline the model of the 

representative bridge for the four multi-span bridge classes. 

5.2 Deterministic Seismic Response 

Deterministic seismic analysis provides the bridge response at the component level. The 

Rayleigh damping assumed for all the models is 5%. The deterministic response is evaluated using 

a single ground motion from Rix and Fernandez-Leon [36] ground motions. Figure 5.2 depicts the 

acceleration–time history plots of the selected ground motion. This ground motion has a maximum 

PGA of 0.36 g and duration equal to about 13 seconds. This ground motion is chosen to simulate 

the effect of the expected maximum PGA for Site Class E in Georgia, which is equal to 0.35 g. 

 

Figure 5.2 – Acceleration–Time Plot for Rix and Fernandez-Leon 

Ground Motion Selected for Deterministic Bridge Analysis. 

5.2.1 Multi-Span Simply Supported Concrete Girder Bridge 

5.2.1.1 Superstructure 

The multi-span simply supported (MSSS) concrete girder bridge class comprises about 

41% of bridges in the state of Georgia. Figure 5.3 presents the basic geometric layout for the MSSS 
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concrete girder bridge. The bridge has 3 spans, which are 67-ft-6-in., 75-ft, and 67-ft-6-in. long. 

The deck of the bridge is 43-ft-11-in. wide and uses an 8-in.-thick concrete slab supported by five 

AASHTO Type III Prestressed Concrete (PSC) beam girders on Spans 1 and 2 and AASHTO Type 

II PSC beam girders on Span 3. Bridges with other typical deck widths, e.g., 43-ft-3-in., would be 

expected to exhibit similar performance. The gaps present at the adjacent spans are 4-in., whereas 

at the abutments, the gaps are equal to 2-in. 

 

Figure 5.3 – Multi-Span Simply Supported Concrete Girder Bridge Layout. 

5.2.1.2 Substructure 

The substructure is made of 37-ft-10-in.-wide 2-column concrete bents. As illustrated in 

Figure 5.4, the bent beam has a square cross section with an edge length of 3-ft-6-in., which is 

supported by 3-ft by 3-ft square columns. The bent beam uses five equally spaced #11 bars on the 

top and bottom edges and three equally spaced #5 bars on the side edges with a minimum clear 
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concrete cover of 2-in. with #4 bars for transverse reinforcement spaced at a maximum distance of 

12-in. The two supporting columns for each bent have a center-to-center distance of 23-ft-8-in. 

and use reinforcement detailing of 12 #11 equally spaced rebars with transverse reinforcement 

being #4 bars spaced at 12-in. The average height of the columns is 26-ft and the lap splice extends 

9-ft from the base of the column. The columns are supported by standard HP 14 × 73 steel H piles.  

 

Figure 5.4 – Cross-Sectional Layout for Bent Beam and Column for Multi-Span Simply 

Supported Concrete Girder Bridge. 

5.2.1.3 Bearings 

Laminated elastomeric bearings are the most commonly used bearings for the MSSS 

concrete bridge class. These bearings have a dowel bar embedded in the concrete bent that extends 

into the bridge girder as shown in Figure 5.5. The elastomeric pad is reinforced using steel plates 

that are placed in between the layers of elastomer to reduce bulging and shear strains in the pad. 

Although the steel layers increase the compressive and flexural stiffness of the bearing pad, there 

is no significant change in the shear stiffness [51]. The behavior of these bearings is characterized 

by sliding of the girder over the elastomeric pad. Initially, there exists a gap between the girder 

and dowel bar as illustrated in Figure 5.5. The friction between the elastomer and girder provides 

the initial stiffness for sliding until the movement is enough to fill the gap between the dowel bar 
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and girder. At this point, the resistance to the sliding motion is provided by the combined action 

of the elastomeric pad and the dowel bar. 

 

Figure 5.5 – Typical Layout of Elastomeric Bearing. 

The initial stiffness provided by the elastomeric pad is modeled as an elastic perfectly 

plastic material as shown in Figure 5.6(a). Choi proposed a formulation for calculating the initial 

stiffness, 𝑘0, of the bearing as follows [52]: 

 
𝑘0 =

𝐺𝐴

ℎ𝑟
 (14) 

where 𝐺 is the shear modulus of the elastomer, 𝐴 is the area of the elastomeric pad, and ℎ𝑟 is the 

height of the bearing pad. The area and height of the elastomeric pad are dependent on the bearing 

configuration, and the shear modulus of the elastomer is taken as 131.57 lb/in2. 

The frictional coefficient between the concrete girder and elastomeric pad governs the yield 

force that can be developed in the bearing pad. Experimental tests conducted on elastomeric 

bearings have revealed that the coefficient of friction is a function of the normal stress imposed by 



59 

 

the superstructure on the bearing. Based on experimental tests, Scharge proposed an empirical 

formula to determine the frictional coefficient, 𝜇𝑓, as follows [53]: 

 
𝜇𝑓 = 0.05 +

0.4

𝜎𝑚
 (15) 

where 𝜎𝑚 is the normal stress on the bearing pad due to the superstructure. 

As the gap between the dowel bar and girder is filled, the dowel bar is engaged in the 

bearing sliding motion. The behavior of the dowel bar can be characterized as lateral force acting 

on a cantilever. Initially, when the dowel bar is in the elastic range, it is assumed to behave linearly. 

Under moderate to high lateral loads, the bar follows a nonlinear pattern until the fracturing of the 

bars, which leads to a sudden drop in the strength. Although the diameter of the dowel bars used 

for elastomeric bearings in Georgia is 1¼-in., dowel bars in the present study are assumed to be 

1-in. diameter due to lack of research on the response of dowel bars. Choi (2002) evaluated the 

response of 1-in.-diameter dowel bars using an ABAQUS model. The stress–strain behavior of the 

dowel bar, as shown in Figure 5.6(b), used in the present study is taken from Choi’s work with the 

same stiffness values. 
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(a) (b) 

Figure 5.6 – Stress–Strain Model Used for (a) Elastomeric Pad, and 

(b) Dowel Bar in the Elastomeric Bearing. 

Note that the K values shown in Figure 5.6 represent stiffness values of the corresponding branches 

of the force-displacement curves.  

5.2.1.4 Seismic Response 

The effect of lap splice and transverse reinforcement spacing on the main components of 

the bridge is analyzed by nonlinear time history analyses. Due to the presence of a lap splice at the 

base of the column, more demand is imposed on the bridge columns. The demand is further 

increased when the lap splice is provided with non-seismic column transverse spacing. This 

phenomenon is illustrated in Figure 5.7, which shows about 32% increase in the curvature demand 

when the lap splice is provided with non-seismic transverse reinforcement spacing and about 19% 

increase when the lap splice is provided with seismic transverse reinforcement spacing.  
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Figure 5.7 – Curvature Demand on Column Base 

 of MSSS Concrete Bridge. 

The comparative force–displacement curves for the fixed and expansion laminated 

elastomeric bearings in the bridge are shown in Figure 5.8. For the fixed bearings, the gap between 

the dowel bar and elastomeric pad is 0.12-in. Figure 5.8(a) shows the change in stiffness of the 

force–displacement curve of the fixed elastomeric bearing due to engagement of the dowel bar. 

Similarly, for the expansion bearing, the gap is 1.0-in., as shown in Figure 5.8(b). The bearing 

response for all three cases is similar because the chosen ground motion is not of a very high 

intensity. 
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(a) 

 

(b) 

Figure 5.8 – Force–Displacement Curves for (a) Fixed, and (b) Expansion Laminated 

Elastomeric Bearings Used in MSSS Concrete Bridge. 

5.2.2 Multi-Span Continuous Steel Girder Bridge 

5.2.2.1 Superstructure 

The next bridge class considered in the study was multi-span continuous (MSC) type steel 

girder bridges. This type of bridge comprises about 11% of bridges in Georgia. The basic 

geometric configuration for a representative bridge from this bridge class is shown in Figure 5.9. 

The bridge consists of three spans and is 36-ft-10-in. wide. The span lengths for this bridge are 43-

ft, 67-ft, and 43-ft. The deck is a composite steel deck supported by five wide-flange steel girders. 
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Figure 5.9 – Multi-Span Continuous Steel Girder Bridge Layout. 

5.2.2.2 Substructure 

Like the previous bridge class, the substructure consists of two-column bents. The average 

width of the bents is 43-ft and the average height of the columns is 26-ft. The columns are spaced 

at a distance of 20-ft. The lap splice is present at the base of the column and has a length of 6.5-ft. 

The cross-sectional layouts for the bent and column are shown in Figure 5.10. The bent has a 

square cross section with each side equal to 3-ft and is reinforced with seven #11 bars each at the 

top and bottom edges and two #4 bars on each side. The shear reinforcement for the bents is 

provided by #5 bars at 12-in. spacing. Likewise, the column has a square cross section with the 

edge length equal to 3-ft. The column reinforcement consists of 12 #12 equally spaced bars and 

#4 stirrups spaced at 12 in. 
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Figure 5.10 – Cross-Sectional Layout for Bent Beam and Column for 

Multi-Span Continuous Steel Girder Bridge. 

5.2.2.3 Bearings 

Low-profile steel bearings are the second most commonly used bearings for steel bridges 

in Georgia. A prototype of a low-profile bridge bearing is shown in Figure 5.11. These bearings 

are constructed by attaching a masonry plate to the top of the bent or abutment using anchor bolts 

and a sole plate underneath the girder. For fixed bearings, a curved sole plate and pintles are 

provided to restrict the translational movements while maintaining the rotational movement. For 

expansion bearings, no pintles are provided so that free translational movement is permitted to 

dissipate the energy.  

 

Figure 5.11 – Typical Layout of Low-Profile Steel Fixed Bearing. 
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The study on analytical modeling of bridge steel bearings was initiated by Mander et al. 

[54]. However, the test apparatus used by them was not appropriate to simulate field conditions, 

as the test bearings were mounted to steel assemblies to constrain the damage only to the pintles. 

This is in contrast with field conditions where the masonry plate is attached to the concrete pedestal 

by means of anchor bolts. Thus, failure mechanism of either the anchor bolt or pintle, whichever 

happens first, could lead to the bearing failure. Based on this, Steelman et al. considered two types 

of low-profile steel fixed bearings: weak anchor and weak pintles [55]. They investigated the cyclic 

response of these bearings through an improved test apparatus to formulate more accurate 

analytical models. For the representative MSC steel bridge in Georgia, the diameter of the anchor 

and pintle is equal to 1-in., however, the effective diameter of the anchor bolts is reduced to 4/5 of 

the original diameter due to the thread adjustment factor. Due to this, the bearings used in Georgia 

are considered to be weak anchor bearings and the failure is governed by the rupturing of the 

anchor bolts.  

The fuse capacity, 𝑉𝑓𝑢𝑠𝑒, for steel bearings can be calculated per the following equation: 

 𝑉𝑓𝑢𝑠𝑒 = 𝜙𝑛0.6𝐹𝑢𝐴𝑏𝑠 (16) 

where 𝜙 is the strength reduction factor (equal to unity), 𝑛 is the number of shear transfer elements 

(equal to 2 as there are two anchors), 𝐹𝑢 is the ultimate tensile strength of the material, and 𝐴𝑏𝑠 is 

the effective cross-sectional area of the shear element. 

Along with the fusing action, the bearing interface provides resistance to the translational 

movement through frictional force. Like elastomeric bearings, frictional resistance is modeled as 

elastic–perfectly plastic and is coupled with the anchor bolt backbone curve in parallel. 
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According to the latest AASHTO Specifications (2014), the use of steel bearings is 

recommended only as fixed bearings, whereas expansion steel bearings have become obsolete. 

However, as the representative bridge is an older bridge, steel bearings have been used as 

expansion bearings also. The only difference between fixed and expansion bearings is that there 

are no pintles to restrict the translational movement in the latter. 

5.2.2.4 Seismic Response 

Figure 5.12 shows the effect of the 9-ft lap splice and transverse reinforcement spacing on 

the curvature demand imposed on the MSC steel girder bridge column. As the ground motion is 

of medium PGA intensity, the column response mostly remains in the linear range. A decrease in 

the moment capacity and increase in the curvature demand on the column can be observed from 

the figure when the lap splice is present at the base of the column. The increase in curvature is 

approximately 12.12% when non-seismic transverse spacing is provided and 3.93% when seismic 

reinforcement spacing is provided. 

 

Figure 5.12 – Curvature Demand on Column Base of 

MSC Steel Girder Bridge. 
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The force–displacement response for the fixed and expansion steel bearings for MSC steel 

girder bridges is shown in Figure 5.13(a) and Figure 5.13(b), respectively. The bearing responses 

are very similar to those of the previous bridge class. The force–displacement response for both 

types of bearings stays in the linear range, which indicates that there was no rupture in either the 

pintles or anchors. 

 

(a) 

 

(b) 

Figure 5.13 – Force–Displacement Curves for (a) Fixed, and 

(b) Expansion Steel Bearings Used in MSC Steel Girder Bridge. 

5.2.3 Multi-Span Simply Supported Steel Girder Bridge 

5.2.3.1 Superstructure 

The next bridge class considered in the study was MSSS steel girder. The general layout 

for the representative bridge in this bridge class is shown in Figure 5.14. The bridge has a deck 

width of 43-ft-3-in. and is supported by five steel girders. The side spans of the bridge are 40-ft 

long, and the main span is 80-ft long. 
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Figure 5.14 – Multi-Span Simply Supported Steel Girder Bridge Layout. 

5.2.3.2 Substructure 

The substructure for this bridge is supported by two 2-column bents. The width is 39-ft and 

the average height of the two columns is 15-ft. The bent cross section is a square cross section with 

width equal to 3-ft-6-in. The bent is reinforced with 14 #11 bars on the top and bottom edges and 

2 #6 bars on the side edges. The shear reinforcement comprises #5 bars spaced at 12-in. with a 

clear concrete cover of 2-in. Figure 5.15 depicts the column cross section, which is a square with 

the edge length equal to 3.5-ft. The column section is reinforced with eight equally spaced #11 

bars with #6 bars providing the shear reinforcement at 6-in. spacing. Lap splice length is taken 

equal to 9.0-ft.  



69 

 

 

Figure 5.15 – Cross-Sectional Layout for Bent Beam and Column for 

Multi-Span Simply Supported Steel Girder Bridge. 

5.2.3.3 Bearings 

As stated in Section 5.2.2.3, the commonly used bearings for steel bridges in Georgia are 

low-profile steel bearings. This bridge class uses this same type of bearing.  

 

5.2.3.4 Seismic Response  

 

Figure 5.16 – Curvature Demand on Column Base of 

MSSS Steel Girder Bridge. 
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For the MSSS steel bridge, there is more displacement demand imposed compared to the 

MSC steel bridge (see Figure 5.16). This could be the result of more inertial mass in the 

superstructure of the MSSS steel bridge.  

5.2.4 Multi-Span Simply Supported Slab Bridge 

5.2.4.1 Superstructure 

The final bridge class considered in the study is MSSS slab bridges with pile bents. The 

general layout for the representative bridge in this bridge class is shown in Figure 5.17. This bridge 

class does not have columns. Instead, the bents are directly supported by piles. The deck consists 

of 15 box beams, leading to the deck width of about 46-ft. The end spans of the bridge are 40-ft 

long, and the middle span is 60-ft long. 

5.2.4.2 Substructure 

The substructure for this bridge class is pile bents (Figure 5.17). There are four bents in 

this representative bridge: two bents are located at two ends for abutments, and another two bents 

are in the middle of the bridge. All bents are supported directly by seven piles. The length of the 

14 piles supporting two middle bents is 13.5-ft, measuring from the ground to the bottom of the 

bents. The piles extend 1.0-ft into the bent caps, as shown in Figure 5.18. The pile cross section is 

20-in. diameter with a metal shell of 5/16-in. thickness and 45 ksi strength. The pile section is 

reinforced with eight equally spaced #10 bars and with #5 bars providing the shear reinforcement 

at 12-in. spacing. The height and width of the middle bent caps are 3.0-ft and 3.5-ft, respectively. 

The longitudinal bars in the bent caps consist of four #10 and eight #4, and the stirrups in the bent 

caps near the piles are #4 @ 6.5-in., and between the piles are #4 @ 10.5-in.  

mailto:#4 @ 6.5
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                                                      Elevation of the entire bridge 

              

                                                           Elevation of the pile bents  
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Elevation of the slab consisting of 15 box beams 

Figure 5.17 – Multi-Span Simply Supported Slab Bridge Layout. 

 

  

Figure 5.18 – Cross-Sectional Layout for Bent Cap and Pile for Multi-Span Simply 

Supported Slab Bridge. 
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5.2.4.3 Bearings 

There is a bearing pad below each box beam, as shown in Figure 5.19. Each bearing pad 

has two holes for two smooth dowel bars 1-in. diameter and 2-ft long. The hole size on the bearing 

pads for fixed bearings is 1.25-in., and the hole size on the bearing pads for expansion bearings is 

2.5-in. The thickness for all the bearing pads is 0.5-in. The bearing model considers the lateral 

capacities of the elastomeric bearing pad and two dowel bars, as shown in Figure 5.6. 

 

Figure 5.19 –Layout for Fixed and Expansion Bearings for Multi-Span 

Simply Supported Slab Bridge. 
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5.2.4.4 Effect of Embedded Pile Length from Piles into Bent Caps (Experimental Results) 

Ziehl et al. [56] performed a series of experimental tests to investigate the effect of 

embedded pile length into bent caps (see Figure 5.20). Four 18-in.-diameter piles were embedded 

into bent caps with 18-in., 26-in., and 22-in. embedment lengths. The lateral strengths were in a 

range of 13 to 20 kips. The pile with the longest embedment length (specimen IB-26-1) did not 

possess the highest strength. In addition, all four piles showed yield plateaus, regardless of the pile 

embedment length. This conclusion agrees with the provision of at least 12-in. embedment in the 

latest version of the AASHTO LRFD Bridge Design Specification in 2014 [1]. 

 
 

Figure 5.20 – Lateral Strength vs. Lateral Displacement of 18-in. Diameter Piles with 

18-in., 26-in., and 22-in. Embedded Length. [56] 
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CHAPTER 6 SITE-SPECIFIC FRAGILITY CURVES 

With the objective of assessing demands imposed on different bridge components, this 

chapter presents probabilistic seismic demand models (PSDMs) for multi-span highway bridge 

classes in Georgia. These curves are generated based on nonlinear dynamic analyses under a 

number of ground motions as a function of peak ground acceleration (PGA) and seismic detailing 

requirements. Furthermore, fragility curves at the component- and system-level for these bridges 

are presented in the next subsection. Based on these curves, site-specific seismic damage risk is 

evaluated for Seismic Classes A, B, C, D, and E. Differences in seismic risk are for the most part 

described relative to Limit State 1, with some discussions relative to Limit State 2 as relevant. 

However, all probabilities of reaching the different limit states are provided. Conclusions about 

risk relative to any of the varying levels of damage represented by the different limit states can be 

obtained from these values. 

 

6.1 PSDMs for Multi-Span Highway Bridges 

As discussed in Section 4.3, PSDMs are generated for columns based on the maximum 

curvature ductility demands on them. A suite of 48 ground motions is used to assess the demand 

quantity of interest. PSDMs for various classes of bridges are plotted in Figure 6.1. PSDMs are 

plotted on a log–log scale with the demand variable on the y-axis and intensity measure on the 

x-axis. The PSDMs reveal the decrease in seismic performance for all three bridge classes when 

the logarithm of PGA is greater than −2. 



76 

 

  

(a) (b) 

 

(c) 

Figure 6.1 – PSDMs for Column Curvature Ductility Demand for (a) MSSS Concrete 

Bridge, (b) MSC Steel Girder Bridge, and (c) MSSS Steel Girder Bridge. 

6.2 Seismic Fragility Curves and Site-Specific Risk Estimates 

The following subsections present the column seismic fragility curves for the four limit 

states considered in this study. These curves are presented for three cases for lap splice and 

transverse reinforcement spacing: (1) no lap splice, (2) lap splice at the bottom of the column with 

a non-seismic transverse spacing (12-in. spacing), and (3) lap splice at the bottom of the column 

with a non-seismic transverse spacing (3-in. spacing). 
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6.2.1 Multi-Span Simply Supported Concrete Bridges 

Figure 6.2 presents the fragility curves for all the limit states for these three cases, and 

Table 6-1 provides the probability estimates of exceeding the limit states. Note that LS stands for 

limit state in the figures and tables. 
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Figure 6.2 – Seismic Fragility Curves for MSSS Concrete Class for (a) No-Lap Splice with 

Seismic Spacing (s = 3-in.), (b) Lap Splice with Non-Seismic Spacing (s = 12-in.), and 

(c) Lap Splice with Seismic Spacing (s = 3-in.). 
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Table 6-1 – Comparative Probability Estimates of Exceeding Four Limit States for MSSS 

Concrete Bridges for (a) No-Lap Splice with Seismic Spacing (s = 3-in.), (b) Lap Splice with 

Non-Seismic Spacing (s = 12-in.), and (c) Lap Splice with Seismic Spacing (s = 3-in.). 

(a) 

PGA 

(g) 
LS 1 LS 2 LS 3 LS 4 

0.05 0.0% 0.0% 0.0% 0.0% 

0.10 0.2% 0.0% 0.0% 0.0% 

0.15 2.0% 0.0% 0.0% 0.0% 

0.20 6.8% 0.2% 0.1% 0.0% 

0.25 14.4% 0.7% 0.3% 0.1% 

0.30 23.8% 1.9% 0.7% 0.2% 

0.35 33.9% 4.0% 1.5% 0.4% 
 

 (b) 

PGA 

(g) 
LS 1 LS 2 LS 3 LS 4 

0.05 0.0% 0.0% 0.0% 0.0% 

0.10 2.1% 0.0% 0.0% 0.0% 

0.15 11.2% 0.2% 0.1% 0.0% 

0.20 26.1% 1.4% 0.5% 0.1% 

0.25 42.4% 4.3% 1.6% 0.2% 

0.30 56.9% 9.3% 3.7% 0.6% 

0.35 68.5% 16.2% 6.8% 1.4% 
 

 

(c) 

PGA (g) LS 1 LS 2 LS 3 LS 4 

0.05 0.0% 0.0% 0.0% 0.0% 

0.10 0.4% 0.0% 0.0% 0.0% 

0.15 2.9% 0.0% 0.0% 0.0% 

0.20 9.3% 0.4% 0.1% 0.0% 

0.25 18.9% 1.3% 0.5% 0.1% 

0.30 30.1% 3.4% 1.2% 0.3% 

0.35 41.4% 6.7% 2.5% 0.8% 
 

6.2.1.1 Site Class A 

Table 6-2 presents the failure probabilities of the column reaching or exceeding each limit 

state. The maximum probability of exceeding Limit State 1 is estimated to be equal to 6.23% in 

Region 1. As all the probabilities are low, 6.5-ft lap splices with non-seismic transverse spacing 

are safe to be used for Site Class A. 
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Table 6-2 – Seismic Risk for MSSS Concrete Bridges for Site Class A when Lap-Splice with 

Non-Seismic Spacing is Provided. 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.13 6.23% 0.07% 0.03% 0.00% 

2 1-A 0.11 3.57% 0.02% 0.01% 0.00% 

3 1-A 0.08 0.66% 0.00% 0.00% 0.00% 

4 1-A 0.06 0.17% 0.00% 0.00% 0.00% 

5 1-A 0.05 0.02% 0.00% 0.00% 0.00% 

6 1-A 0.03 0.00% 0.00% 0.00% 0.00% 

 

6.2.1.2 Site Class B 

Although for Site Class B, the whole state falls in Seismic Zone 1-A, the earthquake 

intensities for each region are higher than those for Site Class A. This results in higher probabilities 

of reaching the limit states for Site Class B compared to Site Class A, as shown in 

Table 6-3. The maximum probability of exceeding the first limit state is 13.83% in Region 1. 

Considering this risk, to be on the conservative side, lap splice with seismic reinforcement spacing 

could be provided for Region 1 for Site Class B. However, for the rest of the state, a lap splice 

with a non-seismic spacing is sufficient. 

Table 6-3 – Seismic Risk for MSSS Concrete Bridges for Site Class B when Lap-Splice with 

Non-Seismic Spacing is Provided. 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.16 13.83% 0.36% 0.14% 0.01% 

2 1-A 0.14 8.76% 0.14% 0.06% 0.00% 

3 1-A 0.10 2.11% 0.01% 0.01% 0.00% 

4 1-A 0.08 0.66% 0.00% 0.00% 0.00% 

5 1-A 0.06 0.11% 0.00% 0.00% 0.00% 

6 1-A 0.04 0.01% 0.00% 0.00% 0.00% 
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6.2.1.3 Site Class C 

As observed from Table 6-4(a) when a lap splice with non-seismic spacing is provided at 

the base of the columns, the probabilities of exceeding Limit State 1 for Seismic Zone 1-B 

(Regions 1 and 2) are 23.51% and 16.11%. Table 6-4(b) presents the probabilities for Regions 1 

and 2 when a lap splice with seismic spacing is provided at the base of the column. When the 

seismic spacing is provided, the probabilities of exceeding Limit State 1 for Regions 1 and 2 reduce 

to 8.03% and 4.78%, respectively. Table 6-4(c) presents the probabilities for Regions 1 and 2 when 

no lap splice is provided at the base of the column. In this case, the probabilities of exceedance 

further reduce to 5.79% and 3.36%, respectively. Considering these values, for Site Class C, it is 

recommended that seismic spacing be provided for MSSS concrete bridge class when the bridge 

is in Seismic Zone 1-B. 
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Table 6-4 – Seismic Risk for MSSS Concrete Bridges for Site Class C when (a) Lap-Splice 

with Non-Seismic Spacing is Provided, (b) Lap-Splice with Seismic Spacing is Provided, 

and (c) No Lap Splice is Provided. 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 23.51% 1.10% 0.42% 0.04% 

2 1-B 0.17 16.11% 0.49% 0.19% 0.01% 

3 1-A 0.12 4.80% 0.05% 0.02% 0.00% 

4 1-A 0.10 1.73% 0.01% 0.00% 0.00% 

5 1-A 0.07 0.36% 0.00% 0.00% 0.00% 

6 1-A 0.05 0.02% 0.00% 0.00% 0.00% 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 8.03% 0.27% 0.10% 0.02% 

2 1-B 0.17 4.78% 0.11% 0.04% 0.01% 

(c) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 5.79% 0.13% 0.05% 0.00% 

2 1-B 0.17 3.36% 0.05% 0.02% 0.00% 

 

6.2.1.4 Site Class D 

For Site Class D, Table 6-5(a) shows that the probabilities of exceeding Limit State 1 are 

40.15% and 29.38% for Regions 1 and 2, respectively, when a lap splice and non-seismic spacing 

are provided. When a lap splice is not provided at the column base as shown in Table 6-5(b), the 

probability of exceedance for Region 1 has a reduction of 26.99% for Limit State 1. Similarly, 
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when a lap splice is not provided at the column base, the probability of exceedance for Region 2 

has a reduction of 21.31% for Limit State 1. Due to this considerable reduction in the risk, it is 

recommended that the lap splice should not be provided for Seismic Zone 2 for Site Class D.  

For the rest of the state, the risk estimates are low due to lower earthquake intensities even 

though the regions fall in Seismic Zone 1-B. It is recommended that seismic spacing requirements 

be followed for Seismic Zone 1-B, particularly for Region 3, which sees a decrease in seismic risk 

of exceeding Limit State 1 from 13.83% to 3.90%. 

Table 6-5 – Seismic Risk for MSSS Concrete Bridges for Site Class D when (a) Lap-Splice 

with Non-Seismic Spacing is Provided, (b) Lap-Splice with Seismic Spacing is Provided for 

Seismic Zone 1-B, and No Lap Splice is Provided for Seismic Zone 2. 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.24 40.15% 3.76% 1.43% 0.20% 

2 2 0.21 29.38% 1.80% 0.68% 0.08% 

3 1-B 0.16 13.83% 0.36% 0.14% 0.01% 

4 1-B 0.13 6.62% 0.08% 0.04% 0.00% 

5 1-B 0.09 1.73% 0.01% 0.00% 0.00% 

6 1-A 0.06 0.17% 0.00% 0.00% 0.00% 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.24 13.16% 0.60% 0.22% 0.04% 

2 2 0.21 8.07% 0.24% 0.09% 0.02% 

3 1-B 0.16 3.90% 0.08% 0.03% 0.01% 

4 1-B 0.13 1.49% 0.01% 0.01% 0.00% 

5 1-B 0.09 0.28% 0.00% 0.00% 0.00% 
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6.2.1.5 Site Class E 

Table 6-6(a) presents the seismic risk estimated for the MSSS concrete bridge class for Site 

Class E when the lap splice is provided at the base of the column. For most regions, these values 

are large. Eliminating the lap splice reduces the probability of exceeding Limit State 1 by 34.66% 

for Region 1. The reduction of risk for other regions can be observed from Table 6-6(b), as well. 

Therefore, it is recommended to provide no lap splice at the base of the column for Site Class E, 

particularly for Regions 1–5.  

Table 6-6 – Seismic Risk for MSSS Concrete Bridges for Site Class E when (a) Lap-Splice 

with Non-Seismic Spacing is Provided, (b) Lap-Splice with Seismic Spacing is Provided for 

Seismic Zone 1-B and No Lap Splice is Provided for Seismic Zone 2. 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.35 68.53% 16.19% 6.81% 1.41% 

2 2 0.28 51.39% 7.06% 2.76% 0.44% 

3 2 0.25 42.37% 4.29% 1.64% 0.23% 

4 2 0.20 26.10% 1.38% 0.52% 0.06% 

5 2 0.15 11.17% 0.23% 0.09% 0.01% 

6 1-B 0.10 2.11% 0.01% 0.01% 0.00% 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.35 33.87% 4.02% 1.46% 0.39% 

2 2 0.28 19.88% 1.33% 0.48% 0.11% 

3 2 0.25 14.36% 0.71% 0.26% 0.05% 

4 2 0.2 6.76% 0.17% 0.07% 0.01% 

5 2 0.15 2.03% 0.02% 0.01% 0.00% 

6 1-B 0.10 0.36% 0.00% 0.00% 0.00% 
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6.2.2 Multi-Span Continuous Steel Bridges 

Seismic analysis of this bridge class is performed using the same set of ground motions 

and same lap splice cases as for the previous bridge class. Figure 6.3 presents the seismic fragility 

curves for the MSC steel bridge class.  

  

(a) (b) 

 

(c) 

Figure 6.3 – Seismic Fragility Curves for MSC Steel Class for (a) No-Lap Splice with 

Seismic Spacing (s = 3-in.), (b) Lap Splice with Non-Seismic Spacing (s = 12-in.), and 

(c) Lap Splice with Seismic Spacing (s = 3-in.). 
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To facilitate comparison between the bridge classes and varying seismic detail cases, the 

probability values for seismic risk of exceeding limit states (LS) 1–4 are also presented in Table 6-

7. Values are provided up to 0.4 g at intervals of 0.05 g.  

Table 6-7 – Comparative Probability Estimates of Exceeding Four Limit States for MSC 

Steel Bridges for (a) No-Lap Splice with Seismic Spacing (s = 3-in.), (b) Lap Splice with 

Non-Seismic Spacing (s = 12-in.), and (c) Lap Splice with Seismic Spacing (s = 3-in.). 

  (a) (b) 

 

(c) 

 

Note that LS stands for limit state in the tables. 

6.2.2.1 Site Class A 

For MSC steel bridges in Site Class A, the corresponding probabilities of exceeding Limit 

States 1–4 for the six regions are shown in Table 6-8. Because the PGA intensities are low, the 

probabilities of exceeding all the limit states are low, as well. The maximum probability of 
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exceeding any limit state is in Region 1 and is equal to 5.34%. Thus, providing a long lap splice at 

the column base with non-seismic transverse spacing is safe for this site class. 

Table 6-8 – Seismic Risk for MSC Steel Bridges for Site Class A when Lap-Splice with 

Non-Seismic Spacing is Provided. 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.13 5.34% 0.34% 0.14% 0.02% 

2 1-A 0.11 2.76% 0.12% 0.05% 0.01% 

3 1-A 0.08 0.36% 0.01% 0.00% 0.00% 

4 1-A 0.06 0.07% 0.00% 0.00% 0.00% 

5 1-A 0.05 0.01% 0.00% 0.00% 0.00% 

6 1-A 0.03 0.00% 0.00% 0.00% 0.00% 

 

6.2.2.2 Site Class B 

For Site Class B, as shown in Table 6-9, the maximum probability of exceeding any limit 

state is in Region 1 and is equal to 13.47%. This probability is higher than for Site Class A. 

Therefore, relative to Limit State 1, for Site Class B, if the bridge is in Region 1, it is recommended 

that seismic transverse spacing be used. If the limit state of interest is Limit State 2, then non-

seismic spacing is sufficient. For the rest of the state, for all limit states, long lap splices with non-

seismic spacing are safe. 
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Table 6-9 – Seismic Risk for MSC Steel Bridges for Site Class B when Lap-Splice with 

Non-Seismic Spacing is Provided. 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.16 13.47% 1.46% 0.62% 0.13% 

2 1-A 0.14 7.95% 0.63% 0.26% 0.05% 

3 1-A 0.10 1.48% 0.05% 0.02% 0.00% 

4 1-A 0.08 0.36% 0.01% 0.00% 0.00% 

5 1-A 0.06 0.04% 0.00% 0.00% 0.00% 

6 1-A 0.04 0.00% 0.00% 0.00% 0.00% 

 

6.2.2.3 Site Class C 

For Site Class C, Table 6-10(a) shows that Regions 1 and 2 show relatively higher 

probabilities of exceeding the Limit State 1 when a long lap splice with non-seismic spacing is 

used. However, when lap splice with seismic transverse reinforcement spacing is used, these 

probabilities reduce significantly from 24.60% to 10.78% for Region 1 and from 16.03% to 6.22% 

for Region 2, as shown in Table 6-10(b). Hence, for Seismic Zone 1-B in Site Class B, it is 

recommended to use a lap splice with seismic reinforcement spacing. Again, this is relative to 

Limit State 1. Considering performance relative to Limit State 2, the probabilities of exceedance 

may be acceptable for the lap splice and non-seismic spacing. For Seismic Zone 1-A for all limit 

states, a long lap splice with non-seismic spacing is sufficient. 
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Table 6-10 – Seismic Risk for MSC Supported Steel Bridges for Site Class C when 

(a) Lap-Splice with Non-Seismic Spacing is Provided, and (b) Lap-Splice with Seismic 

Spacing is Provided. 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 24.60% 4.02% 1.81% 0.45% 

2 1-B 0.17 16.03% 1.95% 0.01% 0.00% 

3 1-A 0.12 3.92% 0.21% 0.09% 0.01% 

4 1-A 0.10 1.17% 0.03% 0.01% 0.00% 

5 1-A 0.07 0.17% 0.00% 0.00% 0.00% 

6 1-A 0.05 0.00% 0.00% 0.00% 0.00% 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 10.78% 0.56% 0.09% 0.04% 

2 1-B 0.17 6.22% 0.22% 0.03% 0.01% 

 

6.2.2.4 Site Class D 

For Site Class D, Table 6-11(a) shows Limit State 1 probabilities of exceedance of 44.00% 

and 31.39% for Regions 1 and 2, respectively, when a long lap splice with non-seismic spacing is 

used. Table 6-11(b) shows the probabilities of exceedance when no lap splice is used for Seismic 

Zone 2, and lap splice within the plastic hinge region and seismic spacing is used for Seismic 

Zone 1-B. The probabilities shown in Table 6-11(b) are significantly lower than those in Table 

6-11(a), particularly for Regions 1–3 for Limit State 1. Therefore, it is recommended that for Site 

Class D the lap splice be outside the plastic hinge region for Seismic Zone 2 with seismic spacing 

if designing for Limit State 1. For Seismic Zone 1-B Region 3, also relative to Limit State 1, the 

lap splice can be within the plastic hinge region if seismic spacing is provided. Relative to Limit 
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State 2, it is recommended that lap splice outside the plastic hinge region and seismic spacing be 

provided for Region 1 to reduce the risk of exceeding Limit State 2 from 11.69% to 1.10%. 

Table 6-11 – Seismic Risk for MSC Steel Bridges for Site Class D when (a) Lap-Splice with 

Non-Seismic Spacing is Provided, and (b) No Lap Splice with 3-in. Spacing for Seismic 

Zone 2 and Lap-Splice with 3-in. Spacing for Seismic Zone 1-B are Provided. 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.24 44.00% 11.69% 5.82% 1.84% 

2 2 0.21 31.39% 6.22% 2.91% 0.80% 

3 1-B 0.16 13.47% 1.46% 0.62% 0.13% 

4 1-B 0.13 5.74% 0.38% 0.15% 0.03% 

5 1-B 0.09 1.17% 0.03% 0.01% 0.00% 

6 1-A 0.06 0.07% 0.00% 0.00% 0.00% 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.24 17.79% 1.10% 0.17% 0.08% 

2 2 0.21 10.53% 0.42% 0.06% 0.03% 

3 1-B 0.16 4.99% 0.15% 0.02% 0.01% 

4 1-B 0.13 1.74% 0.03% 0.00% 0.00% 

5 1-B 0.09 0.27% 0.00% 0.00% 0.00% 

 

6.2.2.5 Site Class E 

For Site Class E, the corresponding probabilities of exceeding various limit states when lap 

splice with non-seismic spacing are used are shown in Table 6-12(a). The maximum probability 

of exceeding Limit State 1 is for Region 1 and is equal to 75.14%. Except for Region 6, which 

falls in Seismic Zone 1-B, the probabilities of exceeding Limit State 1 for all other regions are 

above 10%. AASHTO LRFD seismic provisions do not recommend lap splices for 
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Seismic Zone 2. Table 6-12(b) shows the probabilities of exceeding limit states when the lap splice 

is outside the plastic hinge region for Seismic Zone 2 and when it is within the plastic hinge region 

with seismic spacing for Seismic Zone 1-B. There is about a 30% reduction in the probabilities of 

exceeding Limit State 1 for Regions 1–3, a 20% reduction for Region 4, and a 10% reduction for 

Region 5 with this seismic detailing. Therefore, it is recommended that, relative to Limit State 1, 

the lap splice be outside the plastic hinge region with seismic spacing for Seismic Zone 2 in Site 

Class E. Relative to Limit State 2, the largest reductions in risk are for Regions 1–3. Therefore, it 

is recommended that the lap splice be outside the plastic hinge region with seismic spacing for 

Regions 1–3 relative to Limit State 2. 
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Table 6-12 – Seismic Risk for MSC Steel Bridge Class for Site Class E when (a) Lap-Splice 

with Non-Seismic Spacing is Provided, and (b) No Lap Splice with 3-in. Spacing for Seismic 

Zone 2 and Lap-Splice with 3-in. Spacing for Seismic Zone 1-B are Provided. 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.35 75.14% 37.22% 22.37% 10.01% 

2 2 0.28 56.78% 19.63% 10.46% 3.80% 

3 2 0.25 46.51% 13.07% 6.59% 2.14% 

4 2 0.20 27.56% 4.93% 2.26% 0.59% 

5 2 0.15 10.54% 0.98% 0.41% 0.08% 

6 1-B 0.10 1.48% 0.05% 0.02% 0.00% 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.35 45.94% 7.61% 1.66% 0.95% 

2 2 0.28 27.28% 2.51% 0.44% 0.23% 

3 2 0.25 19.51% 1.31% 0.21% 0.10% 

4 2 0.2 8.66% 0.30% 0.04% 0.02% 

5 2 0.15 2.22% 0.03% 0.00% 0.00% 

6 1-B 0.10 0.35% 0.00% 0.00% 0.00% 

 

6.2.3 Multi-Span Simply Supported Steel Bridges 

Seismic analysis of this bridge class uses the same set of ground motions and seismic 

detailing cases as for the previous bridge class. Figure 6.4 presents the seismic fragility curves for 

the MSSS steel bridge class. To facilitate comparison between the bridge classes and seismic 

detailing cases, the probability values are also presented in Table 6-13 up to 0.35 g at intervals of 

0.05 g. In general, this bridge class shows increased probabilities of exceeding limit states 

compared to the previously discussed two bridge classes due to the mass of superstructure for 

MSSS steel bridges being higher than for MSSS concrete bridges. This imposes a greater demand 
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on the columns, resulting in higher probabilities of reaching the limit states. For MSSS steel 

bridges, the following results also consider the effect of the number of stirrups in each direction.   

  

(a) (b) 

Figure 6.4 – Seismic Fragility Curves for MSSS Steel Bridges with 9-ft Lap Splice at 6-in. 

Spacing, a) One Stirrup in Each Direction b) Two Stirrups in Each Direction 
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Table 6-13 – Comparative Probability Estimates of Exceeding Four Limit States for MSSS 

Steel Bridges for 9-ft Lap Splice with #6 Stirrup at 6-in. Spacing, (a) One Stirrup in Each 

Direction (b) Two Stirrups in Each Direction 

(a) 

PGA (g) 
Limit 

State 1 
Limit 

State 2 
Limit 

State 3 
Limit 

State 4 

0.05 0.19% 0.00% 0.00% 0.00% 

0.10 9.16% 0.26% 0.10% 0.01% 

0.15 33.85% 3.51% 1.38% 0.22% 

0.20 59.19% 13.19% 5.72% 1.29% 

0.25 76.90% 28.11% 13.66% 4.00% 

0.30 87.43% 44.44% 24.17% 8.72% 

0.35 93.25% 59.17% 35.68% 15.22% 
 

 (b) 

PGA (g) 
Limit 

State 1 
Limit 

State 2 
Limit 

State 3 
Limit 

State 4 

0.05 0.18% 0.00% 0.00% 0.00% 

0.10 8.63% 0.25% 0.10% 0.01% 

0.15 32.51% 3.31% 1.31% 0.21% 

0.20 57.62% 12.56% 5.45% 1.23% 

0.25 75.59% 27.01% 13.10% 3.83% 

0.30 86.49% 43.03% 23.31% 8.36% 

0.35 92.63% 57.68% 34.60% 14.66% 
 

  

According to the results shown above, two stirrups in each direction (four legs) decrease 

the probability of exceeding each limit state slightly in comparison with one stirrup in each 

direction (two legs). This is due to the fact that the combination of the 9-ft lap splice and #6 bar @ 
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6-in. spacing is sufficient to allow the lap splice to develop its flexural yield strength and residual 

strength. Therefore, the number of stirrups along each direction only marginally strengthens the 

confinement effect of core concrete. 

6.2.3.1 Site Class A 

For MSSS steel bridges, as all the regions for Site Class A experience very low earthquake 

intensities, the risk estimates are within the acceptable range, as shown in Table 6-14. Having two 

legs or four legs for stirrups in each direction does not make a significant difference in terms of 

the risk values. 
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Table 6-14 – Seismic Risk for MSSS Steel Bridges for Site Class A with 9-ft Lap Splice,   (a) 

One Stirrup in Each Direction (b) Two Stirrups in Each Direction 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.13 21.93% 1.41% 0.55% 0.07% 

2 1-A 0.11 14.10% 0.59% 0.23% 0.03% 

3 1-A 0.08 3.33% 0.04% 0.02% 0.00% 

4 1-A 0.06 0.97% 0.01% 0.00% 0.00% 

5 1-A 0.05 0.14% 0.00% 0.00% 0.00% 

6 1-A 0.03 0.00% 0.00% 0.00% 0.00% 

 

          (b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.13 20.91% 1.33% 0.52% 0.07% 

2 1-A 0.11 13.36% 0.56% 0.22% 0.02% 

3 1-A 0.08 3.11% 0.04% 0.02% 0.00% 

4 1-A 0.06 0.90% 0.01% 0.00% 0.00% 

5 1-A 0.05 0.13% 0.00% 0.00% 0.00% 

6 1-A 0.03 0.00% 0.00% 0.00% 0.00% 

 

6.2.3.2 Site Class B 

For Site Class B, although all the regions fall in Seismic Zone 1-A, Table 6-15 shows that 

Regions 1 and 2 show relatively high risk values (>25%) for Limit State 1. The probabilities of 

exceedance of Limit State 2 are relatively low. The number of stirrups does not significantly alter 

the probability of exceedance. 
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Table 6-15 – Seismic Risk for MSSS Steel Bridges for Site Class B with 9-ft Lap Splice,   (a) 

One Stirrup in Each Direction (b) Two Stirrups in Each Direction 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.16 39.32% 4.89% 1.96% 0.34% 

2 1-A 0.14 28.36% 2.40% 0.94% 0.14% 

3 1-A 0.10 9.16% 0.26% 0.10% 0.01% 

4 1-A 0.08 3.33% 0.04% 0.02% 0.00% 

5 1-A 0.06 0.65% 0.00% 0.00% 0.00% 

6 1-A 0.04 0.03% 0.00% 0.00% 0.00% 

 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-A 0.16 37.88% 4.63% 1.86% 0.32% 

2 1-A 0.14 27.15% 2.26% 0.88% 0.13% 

3 1-A 0.10 8.63% 0.25% 0.10% 0.01% 

4 1-A 0.08 3.11% 0.04% 0.02% 0.00% 

5 1-A 0.06 0.60% 0.00% 0.00% 0.00% 

6 1-A 0.04 0.03% 0.00% 0.00% 0.00% 

 

6.2.3.3 Site Class C 

Similar to Site Class B, Regions 1 and 2 show relatively high risk values greater than 25% 

for Limit State 1, and low risk values for Limit State 2. Tables 6-16 summarizes the probability of 

exceedance for each region.  
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Table 6-16 – Seismic Risk for MSSS Steel Bridges for Site Class C with 9-ft Lap Splice,   (a) 

One Stirrup in Each Direction (b) Two Stirrups in Each Direction 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 55.58% 11.20% 4.77% 1.02% 

2 1-B 0.17 43.61% 6.20% 2.52% 0.46% 

3 1-A 0.12 17.88% 0.94% 0.36% 0.04% 

4 1-A 0.10 7.73% 0.19% 0.08% 0.01% 

5 1-A 0.07 1.91% 0.02% 0.01% 0.00% 

6 1-A 0.05 0.14% 0.00% 0.00% 0.00% 

 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 1-B 0.19 54.01% 10.65% 4.54% 0.97% 

2 1-B 0.17 42.11% 5.88% 2.39% 0.44% 

3 1-A 0.12 16.99% 0.89% 0.34% 0.04% 

4 1-A 0.10 7.28% 0.18% 0.07% 0.01% 

5 1-A 0.07 1.78% 0.02% 0.01% 0.00% 

6 1-A 0.05 0.13% 0.00% 0.00% 0.00% 

 

6.2.3.4 Site Class D 

For Site Class D, Table 6-17 shows that Regions 1-3 have risk values greater than 25% for 

probabilities of exceeding Limit State 1. The number of stirrups does not significantly alter the 

probability of exceedance. 
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Table 6-17 – Seismic Risk for MSSS Steel Bridges for Site Class D with 9-ft Lap Splice,   (a) 

One Stirrup in Each Direction (b) Two Stirrups in Each Direction 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.24 74.91% 25.85% 12.36% 3.50% 

2 2 0.21 63.40% 15.87% 7.04% 1.68% 

3 1-B 0.16 39.32% 4.89% 1.96% 0.34% 

4 1-B 0.13 22.98% 1.55% 0.60% 0.08% 

5 1-B 0.09 7.73% 0.19% 0.08% 0.01% 

6 1-A 0.06 0.97% 0.01% 0.00% 0.00% 

 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.24 73.55% 24.81% 11.84% 3.35% 

2 2 0.21 61.86% 15.14% 6.71% 1.60% 

3 1-B 0.16 37.88% 4.63% 1.86% 0.32% 

4 1-B 0.13 21.92% 1.46% 0.57% 0.08% 

5 1-B 0.09 7.28% 0.18% 0.07% 0.01% 

6 1-A 0.06 0.90% 0.01% 0.00% 0.00% 

 

6.2.3.5 Site Class E 

For Site Class E, most of the state falls in Seismic Zone 2. AASHTO LRFD Design 

Specifications do not recommend providing a lap splice at the column base for Seismic Zone 2. 

The probability of exceeding Limit State 1 is more than 25% for Regions 1-5. Regions 1-3 have 

seismic risk values of 25% or larger for Limit State 2.  
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Table 6-18 – Seismic Risk for MSSS Steel Bridges for Site Class E with 9-ft Lap Splice,   (a) 

One Stirrup in Each Direction (b) Two Stirrups in Each Direction 

(a) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.35 93.25% 59.17% 35.68% 15.22% 

2 2 0.28 83.92% 37.97% 19.76% 6.59% 

3 2 0.25 76.90% 28.11% 13.66% 4.00% 

4 2 0.20 59.19% 13.19% 5.72% 1.29% 

5 2 0.15 33.85% 3.51% 1.38% 0.22% 

6 1-B 0.10 9.16% 0.26% 0.10% 0.01% 

 

(b) 

Region Zone PGA (g) Limit State 1 Limit State 2 Limit State 3 Limit State 4 

1 2 0.35 92.63% 57.68% 34.60% 14.66% 

2 2 0.28 82.83% 36.66% 19.01% 6.32% 

3 2 0.25 75.59% 27.01% 13.10% 3.83% 

4 2 0.20 57.62% 12.56% 5.45% 1.23% 

5 2 0.15 32.51% 3.31% 1.31% 0.21% 

6 1-B 0.10 8.63% 0.25% 0.10% 0.01% 

 

6.2.4 Multi-Span Simply Supported Slab Bridges 

Seismic analysis of this bridge class is done using the same set of ground motions as for 

the previous bridge classes. Figure 6.5 presents the seismic fragility curves for the MSSS slab 

bridge class. For comparison between the embedded pile case and the dowel pile case, the 

probability values are also presented in Table 6-19 up to 0.35 g at intervals of 0.05 g. In general, 

this bridge class shows much lower probabilities of damage compared to the other three bridge 

classes. This can be attributed to the large number of piles in a bent (7 piles in a bent) and the metal 
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shell on the reinforced concrete piles. In addition, the dowel pile case shows lower probabilities of 

damage because of the additional dowel bars in the piles. The embedded pile case is similar to the 

dowel pile case, as both cases have similar lateral capacities. Therefore, the embedded pile and 

dowel pile cases exhibit similar performance. 

 

(a) 

 

(b) 

Figure 6.5 – Seismic Fragility Curves for MSSS Slab Bridges with (a) Embedded Piles, and 

(b) Dowel Piles. 
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Table 6-19 – Comparative Probability Estimates of Exceeding Four Limit States for MSSS 

Slab Bridges with (a) Embedded Piles, and (b) Dowel Piles. 

 (a) (b) 

    

Note that LS stands for limit state in the tables. 
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CHAPTER 7 ANALYSIS OF COLUMNS WITH VARIOUS 

TRANSVERSE REINFORCEMENT SPACINGS IN PLASTIC HINGES 

The provisions 5.10.11.4.1d and e in the 2014 AASHTO LRFD Bridge Design 

Specifications [1] specify the transverse reinforcement area and spacing in the plastic hinge region. 

These are intended to support the axial load carried by the column core and to ensure that buckling 

of the longitudinal reinforcement is prevented. Thus, the spacing of the confining reinforcement is 

an important parameter to consider. In addition, there are impacts on constructability for varying 

spacing of the transverse reinforcement. Current specifications indicate that the vertical spacing of 

hoops cannot exceed 4.0-in., which is more rigorous than the 6.0-in. spacing in the 2011 AASHTO 

Guide Specifications for LRFD Seismic Bridge Design. To investigate the differences between the 

4-in. and 6-in. spacings for bridges in Georgia subject to seismic hazard (the maximum PGA 

occurring in Site Class E is 0.34 g), the column responses and seismic risks are compared in the 

following paragraphs. 

First, section analyses of seismically designed columns (#5 bars @ 4-in. o.c. transverse 

reinforcement) compared to non-seismically designed columns (#4 bars @ 12-in. o.c. transverse 

reinforcement) in both square and circular configurations were performed, as shown in Figure 7.1. 

The columns used are based on typical Georgia bridges, with concrete strength of 3500 psi and 

steel yield strength of 60,000 psi. The columns are 16-ft in height (Figure 2.14) and were modeled 

to have periods at approximately 0.6 second. The higher performance of the seismically designed 

columns (#5 bars @ 4-in. o.c. transverse reinforcement) compared to the non-seismically designed 

columns (#4 bars @ 12-in. o.c. transverse reinforcement) in terms of post-yield strength is seen in 

Figure 7.1. 
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Figure 7.1 – Section Analysis. 

A study using a single ground motion from the Rix suite was completed, scaling its 

maximum PGA between 0.1 and 0.65 g. By scaling the PGA, researchers can determine under 

what magnitude ground motion the transverse reinforcement becomes a critical factor in the 

response of the column. A summary of the effect of the column section properties versus ground 

motion PGA is shown in Figure 7.2. The figure indicates that transverse reinforcement is not a 

significant factor until reaching PGA values greater than 0.3 g. It is evident that the seismic circular 

column performs best, as expected. 
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Figure 7.2 – Rix Ground Motion Scaling Summary Comparison. 

Detailed comparisons of the seismic responses under varying values of PGA (0.1, 0.2, 0.3, 

and 0.65 g) are shown in Figures 7.3–7.6, respectively. These plots exhibit that at PGAs of 0.3 g 

and lower, the responses of all columns are very similar. Although Figure 7.2 shows that under a 

higher PGA (0.65 g), the column curvature responses are different, the column drifts are similar. 

Furthermore, the maximum factored PGA in Georgia is only 0.35 g, below the level where there 

is a difference in response. 
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Figure 7.3 – Rix Ground Motion Scaling Responses at 0.1 g. 

 

         

Figure 7.4 – Rix Ground Motion Scaling Responses at 0.2 g. 

 

         

Figure 7.5 – Rix Ground Motion Scaling Responses at 0.3 g. 
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Figure 7.6 – Rix Ground Motion Scaling Responses at 0.65 g. 

Since the maximum transverse reinforcement spacing specified in the latest AASHTO 

LRFD Bridge Design Specifications was reduced to 4-in., the small spacing raises an issue that it 

is difficult for the concrete to uniformly and smoothly flow through reinforcement gaps. Thus, a 

spacing of 6-in. for #6 transverse reinforcement is more constructible. This spacing is studied 

compared to #3 @ 3-in. and #6 @ 4-in. to investigate the estimated differences in seismic risk. As 

shown in Figure 7.7(a), both #6 @ 6-in. and #6 @ 4-in. provide greater strength and ductility than 

#3 @ 3-in. From the reinforcement aspect, the smaller spacing has the increased capacity to prevent 

reinforcement buckling (Figure 7.7(b)). However, for the overall section behavior shown in 

Figure 7.7(c), the performance of the three cases, #3 @ 3-in., #6 @ 4-in., and #6 @ 6-in., is similar. 

In addition, the seismic risk probabilities for the #3 @ 3-in. and #6 @ 6-in. cases are similar, with 

at most a 5% difference in exceeding limit states, as shown in Table 7.1. This is the case for all 

PGAs studied up to 0.4 g and for all limit states. 
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 (a) (b) 

 

 (c) 

Figure 7.7 – Effects of Transverse Reinforcement Spacings at 3-in., 4-in., and 6-in. for 

(a) Concrete, (b) Longitudinal Reinforcement, and (c) Moment vs. Curvature. 

Table 7.1 – Comparative Probability Estimates of Exceeding Four Limit States for 

Columns with: (a) #3 @ 3-in., and (b) #6 @ 6-in. 

(a)                                                                  (b) 

 

Note that LS stands for limit state in the tables. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

Because the state of Georgia is identified as a region with low to moderate seismic activity, 

prior to adoption of LRFD design specifications, few bridges were designed with seismic detailing. 

However, recent specifications, including integration of seismic provisions from AASHTO LRFD 

Bridge Design Specifications [1] into Georgia’s Bridge and Structures Design Manual [4], have 

increased the number of Georgia bridges requiring seismic design. This study investigates the 

impact of the most recent seismic detailing requirements on estimated seismic risk for bridges in 

Georgia. Based on the results, recommendations on seismic design for bridges in Georgia by 

bridge type and site class are provided to GDOT. 

The first part of the study focuses on a literature review of previous research on seismic 

detailing, highlighting the importance of providing adequate lap splice length and transverse 

reinforcement to increase the strength and ductility of columns, especially in the case of cyclic 

loading. To analyze the effect of lap splices, a lap splice force transfer mechanism used in this 

study is presented. The model based on this mechanism depends on various factors, including the 

length of the lap splice, the transverse reinforcement spacing, the steel strength, and the steel rebar 

diameter. A parametric study investigating the impact of these variables on the lap splice stress–

strain is conducted to determine the extent of influence of the factors. 

To study the impact of the most recent AASHTO LRFD Bridge Design Specifications [1] 

on seismic performance, it is necessary to identify the potential seismic hazard in the state of 

Georgia. This is accomplished by dividing the state into six regions based on maximum PGA for 

Site Classes A, B, C, D, and E. It is found that the northern region of Georgia for each site class is 
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most susceptible to potential earthquakes. The maximum PGA in the state is expected for Site 

Class E in the northern region of Georgia and is equal to 0.34 g.  

The seismic detailing parameters, including lap splice and varying transverse 

reinforcement spacing values, are incorporated into 3-D finite element bridge models using the 

software OpenSees. These models are used to estimate the demand imposed on bridge columns 

through running nonlinear time history analyses. Four classes of highway bridges, namely MSSS 

concrete girder bridges, MSC steel girder bridges, MSSS steel girder bridges, and MSSS slab 

bridges, are analyzed to evaluate their seismic risk first based on a deterministic response analysis. 

The ground motion for the deterministic analysis is chosen such that its maximum acceleration 

matches the expected maximum PGA in Georgia. The deterministic nonlinear time history 

analyses show the increase in the curvature demand when a lap splice is provided with non-seismic 

detailing for the northern regions of Georgia. 

A probabilistic analysis is then conducted using a representative bridge from each bridge 

class. A suite of 48 ground motions is used to account for seismic uncertainty. The capacity and 

demand imposed on the columns are compared in terms of curvature ductility to evaluate their risk 

of damage. The probabilities of exceeding four limit states are found. These four limit states 

correspond to: curvature ductility at the first point of yield in the longitudinal rebar; spalling of 

cover concrete due to expansive force; exposure of concrete core or yielding of transverse 

reinforcement, whichever happens first; and lap splice failure in the case of a lap-spliced column, 

or longitudinal rebar buckling in the no lap splice case. The following are the main conclusions 

drawn from the probabilistic analyses: 
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1. For MSSS concrete girder bridges, it is recommended that 6.5-ft lap splice can be provided 

at the base of the columns with 12-in. spacing for Seismic Zone 1-A irrespective of the 

site class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.83% 

for Region 1 with a PGA equal to 0.16 g, a transverse reinforcement spacing of 3-in. could 

be provided. For the rest of the state, lap splice with non-seismic spacing is sufficient 

(refer to Sections 6.2.1.1 and 6.2.1.2).  

For Site Class C, Regions 1 and 2 with PGAs 0.19 g and 0.17 g, respectively, fall 

in Seismic Zone 1-B. For these cases, it is recommended that seismic spacing of 3-in. be 

provided to reduce the risk of exceeding Limit State 1 from 23.51% and 16.11% to 8.03% 

and 4.78%, for Regions 1 and 2, respectively. The 6.5-ft lap splice can be at the base of 

the column for this site class (refer to Section 6.2.1.3).  

For Site Class D, Regions 3–5 fall in Seismic Zone 1-B. Of these, seismic spacing 

is recommended for Region 3 to reduce the risk of exceeding Limit State 1 from 13.83% 

to 3.90% (refer to Section 6.2.1.4). 

Regions 1 and 2 for Site Class D and Regions 1–5 for Site Class E fall in Seismic 

Zone 2. For Seismic Zone 2, it is recommended that the lap splice not be provided at the 

base of the column, irrespective of the site class (refer to Section 6.2.1.5). 

2. For MSC steel girder bridges, it is recommended that 9-ft lap splice can be provided at 

the base of the columns with 12-in. spacing for Seismic Zone 1-A, irrespective of the site 

class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.47% for 

Region 1 with a PGA equal to 0.16 g, a transverse reinforcement spacing of 3-in. could 

be provided. For the rest of the state, lap splice with non-seismic spacing is sufficient 

(refer to Sections 6.2.2.1, 6.2.2.2, and 6.2.2.3).  
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For Seismic Zone 1-B for Site Classes C and D, the 9-ft lap splice could be provided 

at the base of the column with transverse reinforcement spacing recommended equal to 

3-in. to reduce the risk of exceeding Limit State 1 by approximately 10%. Relative to 

Limit State 2, the probabilities of limit-state exceedance may be acceptable for the lap 

splice and non-seismic spacing (refer to Sections 6.2.2.3 and 6.2.2.4). 

For Seismic Zone 2, if designing for Limit State 1, it is recommended that the lap 

splice not be provided at the base of the column, irrespective of the site class D or E (refer 

to Sections 6.2.2.4 and 6.2.2.5).  

3. For MSSS steel girder bridges, the results of the analysis show that the increase of legs 

from two to four for stirrups in each direction does not significantly reduce the probability 

of exceeding defined limit state (refer to Section 6.2.3). Site Class A does not require 

seismic detailing, as the seismic risk values are within the acceptable range (refer to 

Section 6.2.3.1). However, risk values are larger than 25% of exceeding Limit State 1 for 

Regions 1 and 2 (Site Class B and C), Regions 1-3 (Site Class D) and Regions 1-5 (Site 

Class E). Moreover, Region 1 in Site Class D has a probability of 25.85% of exceeding 

Limit State 2, and in Site Class E a probability of exceedance of 35.68% for Limit State 

3. 

4. For multi-span simply supported slab bridges, the conventional practice is to support the 

bridge superstructure on piles. The pile-bent connection is created such that the pile is 

embedded into the bent cap a certain distance. In Georgia, the typical practice is to extend 

the pile 1-ft into the cap if the pile diameter is 20-in. or less.  

Specification 10.7.1.2 in the latest AASHTO LRFD Bridge Design Specifications 

(2014) suggests that the pile should extend at least 12-in. into the cap, which is the only 
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requirement in Seismic Zone 1. This specification is in agreement with the experimental 

results by Ziehl et al. [56] in 2012 (refer to Section 5.2.4.4). The pile embedment length 

does not significantly affect the pile lateral strength. 

Additionally, according to Specification 5.13.4.6.2 [1], for Seismic Zone 2, piles 

may be used to resist both axial and lateral loads. The minimum depth of embedment and 

axial and lateral pile resistances required for seismic loads must be determined by design 

criteria established by site-specific geological and geotechnical investigations. Concrete 

piles are to be anchored to the pile footing or cap by either embedment of reinforcement 

or anchorages to resist uplift forces. Dowel bars designed as per the development length 

criterion must be provided between the pile and bent to resist uplift forces. 

The MSSS slab bridge class shows much lower limit state exceedance probabilities 

compared to the other three bridge classes (refer to Section 6.2.4). This can be attributed 

to a large number of piles in a bent (i.e., 7 piles in a bent) and the metal shell on the 

reinforced concrete piles. In addition, the dowel pile case shows a slightly lower 

probability because of the additional dowel bars in the piles. The embedded pile case is 

similar to the dowel pile case, as both cases have similar lateral capacities. Therefore, the 

embedded pile and dowel pile cases exhibit similar performance. 

5. Both 4-in. and 6-in. spacings of transverse reinforcement provide the same confinement 

capacity for longitudinal lap-spliced bars in plastic hinge regions, with a small difference 

in the core concrete ductility (refer to Chapter 7). From the obtained results of bridge 

column responses, the comparisons of no lap-spliced columns with transverse spacings 

of 12-in. versus 3-in. show that the responses are similar, with only a slight decrease (see 

Figures 7.2–7.5). Thus, for the level of seismic hazard present in the state of Georgia, 
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there is not a significant increase in performance for columns with tight transverse 

reinforcement spacing. From the results of the seismic risk assessment, the risk 

probabilities for the #3 @ 3 in., #6 @ 4-in., and #6 @ 6-in. cases for Georgia bridges are 

similar, with a difference of approximately 5% under the maximum factored PGA of 

0.35 g in Georgia (see Table 7.1). Thus, for Georgia bridges, 6-in. maximum transverse 

reinforcement spacing is acceptable. 
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	Before the switch in design specifications from Standard Specifications to the fifth edition of the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications in 2010, few bridges in the state of Georgia were designed with seismic detailing. Recent 2014 LRFD specifications increased the number of Georgia bridges requiring seismic design and details, with the state of Georgia being identified as a region with seismic activ
	In this study, the performance of representative bridges from different bridge classes in Georgia is investigated to estimate the expected seismic behavior considering the latest AASHTO LRFD Bridge Design Specifications [1]. The responses are compared with the previously used design practices in Georgia’s Bridge and Structures Design Manual. Different cases of varying lap splice length, seismic and non-seismic transverse reinforcement spacing, and seismic and non-seismic pile bents are compared based on non
	estimates computed through the probabilistic analyses for different seismic site classes and for different regions in the state are used to make recommendations on the bridges to be built in the future in the state of Georgia. The primary conclusions from this study are given below. Conclusions 3-6 are based on results from analyses conducted by bridge type.  
	1. The analytical results show significant influences of lap-splice length, rebar size, and transverse reinforcement (TR) spacing on the ductility behavior of lap-spliced columns. 
	1. The analytical results show significant influences of lap-splice length, rebar size, and transverse reinforcement (TR) spacing on the ductility behavior of lap-spliced columns. 
	1. The analytical results show significant influences of lap-splice length, rebar size, and transverse reinforcement (TR) spacing on the ductility behavior of lap-spliced columns. 

	2. For all bridge classes, lap splice at the base of the column with 12-in. TR spacing is acceptable for the lowest Seismic Zone 1A (SD1<0.10). (Note: SD1 = the design spectral response acceleration parameter at 1-s period) 
	2. For all bridge classes, lap splice at the base of the column with 12-in. TR spacing is acceptable for the lowest Seismic Zone 1A (SD1<0.10). (Note: SD1 = the design spectral response acceleration parameter at 1-s period) 

	3. For multi-span simply supported concrete girder bridges, results for Site Classes A, B, and C show a lower than 25% probability of exceeding Limit State 1 with non-seismic TR spacing. For Site Class D, 3-in. TR spacing is recommended in Regions 1 and 2 to reduce the risk of exceeding Limit State 1 (initial longitudinal rebar yield) from 40.15% to 13.16% and 29.38% to 8.07%, respectively. For Site Class E, 3-in. TR spacing is recommended in Regions 1, 2, and 3 to reduce the risk of exceeding Limit State 1
	3. For multi-span simply supported concrete girder bridges, results for Site Classes A, B, and C show a lower than 25% probability of exceeding Limit State 1 with non-seismic TR spacing. For Site Class D, 3-in. TR spacing is recommended in Regions 1 and 2 to reduce the risk of exceeding Limit State 1 (initial longitudinal rebar yield) from 40.15% to 13.16% and 29.38% to 8.07%, respectively. For Site Class E, 3-in. TR spacing is recommended in Regions 1, 2, and 3 to reduce the risk of exceeding Limit State 1

	4. For multi-span continuous steel girder bridges, the 9-ft lap splice can be provided at the base of the column. 3-in. TR spacing is recommended to reduce the risk of exceeding Limit State 1 by 20-30% for Seismic Zone 2. Lap splice is not recommended for Zone 2. 
	4. For multi-span continuous steel girder bridges, the 9-ft lap splice can be provided at the base of the column. 3-in. TR spacing is recommended to reduce the risk of exceeding Limit State 1 by 20-30% for Seismic Zone 2. Lap splice is not recommended for Zone 2. 

	5. For multi-span simply supported steel girder bridges, the risk values comparing the case of one stirrup in each direction (two total legs in each plane) and two stirrups in each direction (four total legs in each plane) with #6 at 6-in. transverse reinforcement are investigated. 
	5. For multi-span simply supported steel girder bridges, the risk values comparing the case of one stirrup in each direction (two total legs in each plane) and two stirrups in each direction (four total legs in each plane) with #6 at 6-in. transverse reinforcement are investigated. 


	The results show that there is less than 2% difference in probability of exceeding defined limit states between the two cases. Regions 1 and 2 for Site Classes B and C; Regions 1-3 for Site Class D; Regions 1-5 for Site Class E show relatively high risk values (>25%) of exceeding Limit State 1, and based on parametric studies of seismic risk from other bridge classes, reducing transverse spacing is recommended. 
	The results show that there is less than 2% difference in probability of exceeding defined limit states between the two cases. Regions 1 and 2 for Site Classes B and C; Regions 1-3 for Site Class D; Regions 1-5 for Site Class E show relatively high risk values (>25%) of exceeding Limit State 1, and based on parametric studies of seismic risk from other bridge classes, reducing transverse spacing is recommended. 
	The results show that there is less than 2% difference in probability of exceeding defined limit states between the two cases. Regions 1 and 2 for Site Classes B and C; Regions 1-3 for Site Class D; Regions 1-5 for Site Class E show relatively high risk values (>25%) of exceeding Limit State 1, and based on parametric studies of seismic risk from other bridge classes, reducing transverse spacing is recommended. 

	6. For pile bents, for Seismic Zone 1, at least 12-in. embedment of piles into bents is the only requirement. The specifications do not include the pile sizes and corresponding embedment lengths, which are consistent with the experimental results, if bents are designed appropriately. The pile embedment length does not significantly affect the pile lateral strength. 
	6. For pile bents, for Seismic Zone 1, at least 12-in. embedment of piles into bents is the only requirement. The specifications do not include the pile sizes and corresponding embedment lengths, which are consistent with the experimental results, if bents are designed appropriately. The pile embedment length does not significantly affect the pile lateral strength. 

	7. The results of the seismic risk assessment on columns with varying TR spacing showed similar responses. The risk probabilities for the #3 @ 3-in., #6 @ 4-in., and #6 @ 6-in. cases for Georgia bridges are similar, with a difference of approximately 5% under the maximum factored PGA of 0.35 g in Georgia 
	7. The results of the seismic risk assessment on columns with varying TR spacing showed similar responses. The risk probabilities for the #3 @ 3-in., #6 @ 4-in., and #6 @ 6-in. cases for Georgia bridges are similar, with a difference of approximately 5% under the maximum factored PGA of 0.35 g in Georgia 
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	LIST OF VARIABLES 
	p Perimeter of the characteristic concrete block for rectangular and circular column 
	sl Center-to-center spacing between the longitudinal bars 
	db Diameter of the longitudinal bars 
	c Clear concrete cover 
	n Number of evenly distributed longitudinal bars around the core  
	D Diameter of the core concrete 
	𝑇𝑏 Maximum force developed in the longitudinal reinforcement bar 
	𝑓𝑡 Concrete tensile strength 
	𝐴𝑏 Cross-sectional area of longitudinal bar  
	𝑙𝑠 Length of lap splice 
	𝑓𝑠 Maximum stress capacity developed in lap splice section 
	𝑓𝑟 Residual stress of lap splice section  
	𝜇 Frictional factor 
	𝑛𝑙 Number of transverse reinforcement legs perpendicular to the cracked plane 
	𝑛𝑡 Number of transverse reinforcement bars crossing the cracked plane 
	𝐴ℎ Crack surface area 
	𝑓ℎ Yield strength of the transverse reinforcement 
	𝑢 Slip displacement 
	𝜀𝑠 Total strain at the peak stress 
	𝐸𝑆 Elastic modulus of the rebar 
	𝑙𝑠𝑠 Fictitious length 
	𝜀𝑟 Residual strain of lap splice section 
	𝑃𝐺𝐴 Peak ground acceleration  
	𝑆𝑆 Short-period spectral acceleration 
	𝑆1 Long-period spectral acceleration 
	𝐹𝑃𝐺𝐴  Site adjustment factors for PGA 
	𝐹𝑎 Site adjustment factors for short-period spectral acceleration 
	𝐹𝑣  Site adjustment factors for long-period spectral acceleration 
	𝐴𝑆 Peak seismic ground acceleration coefficient modified by short-period site factor 
	𝑆𝐷𝑆 Horizontal response spectral acceleration coefficient at 0.2-s period modified by  
	                   short-period site factor 
	𝑆𝐷1 Horizontal response spectral acceleration coefficient at 1.0-s period modified by      
	                   short-period site factor 
	𝑆𝑎 Spectral acceleration in unit of gravitational acceleration g 
	𝐶𝑠𝑚 Elastic seismic response coefficient for the mth mode of vibration      
	𝑇𝑚 Period of vibration for mth mode (s) 
	𝑇𝑜 Reference period used to define shape of acceleration response spectrum (s) 
	𝑇𝑠 Corner period at which acceleration response spectrum changes from being  
	            independent of period to being inversely proportional to period (s) 
	𝐹 Fragility function 
	𝐷 Demand of the structural component 
	𝐶 Capacity of the component 
	𝐼𝑀 Intensity measure of the hazard 
	𝛷(∙) Standard normal cumulative distribution function 
	 𝑆𝑑 Median parameter of the demand random variable 
	 𝑆𝑐 Median parameter of the capacity random variable 
	 𝛽𝑑 Lognormal standard deviation of the demand random variable 
	 𝛽𝑐 Lognormal standard deviation of the capacity random variable 
	𝐼𝑓 Indicator function that tracks the number of failed samples 
	𝐿𝑆 Limit state 
	𝑁             Number of random sample generated from capacity and demand distributions 
	𝜇∅             Curvature ductility 
	 𝜅𝑚𝑎𝑥             Maximum curvature observed in the column under seismic shaking 
	 𝜅𝑦𝑖𝑒𝑙𝑑             Column yield curvature 
	𝐸𝐷𝑃             Engineering demand parameters 
	𝑎,𝑏             Coefficients obtained from the linear regression analysis of the model 
	𝑘0             Initial stiffness of the bearing 
	ℎ𝑟             Height of the bearing pad 
	𝜇𝑓             Frictional coefficient 
	𝜎𝑚             Normal stress on the bearing pad due to the superstructure 
	𝑉𝑓𝑢𝑠𝑒             Fuse capacity for steel bearings 
	𝜙             Strength reduction factor 
	𝐹𝑢             Ultimate tensile strength of the material 
	𝐴𝑏𝑠             Effective cross-sectional area of the shear element 
	𝑓𝑦𝑠 (𝑜𝑟 𝑓𝑦) Yield stress of steel. 
	 
	CHAPTER 1 INTRODUCTION 
	1.1 Problem Description 
	The AASHTO LRFD Bridge Design Specifications [1] include extensive seismic design provisions. While earthquakes are considered primarily a problem on the West Coast of the United States, geologists have observed ongoing tectonism in the southeastern region [2]. The southeastern United States has historically seen some of the largest earthquakes, e.g. the 1811–1812 New Madrid earthquakes and the 1886 Charleston earthquake. Because Georgia lies in the vicinity of this active seismic region, potential seismic 
	The latest 2014 AASHTO LRFD Bridge Design Specifications [1] recognize the seismic hazard return period to be equal to 1000 years instead of the previously adopted return period of 500 years. This has resulted in a shift of boundaries of seismic performance zones. According to 
	the latest code, the upper boundary for spectral acceleration (at 1.0 second) for Seismic Zone 1 is 0.15 g as opposed to 0.10 g in the previous AASHTO Specifications (2011). The code has increased seismic design requirements defined for Seismic Zones 2, 3, and 4. However, the change in the spectral acceleration boundaries has led to some ambiguity regarding the seismic detailing requirements, specifically for lap splice and transverse reinforcement spacing, for Seismic Zone 1 when the spectral acceleration 
	Lap splices are an essential part of reinforced concrete structures as they help to maintain the continuity between the structural members. It has been customary to provide lap splices at the bottom of the bridge columns to maintain continuity of the connection with the foundations. During earthquake events, column connections with other bridge components, such as foundations and bent caps, are subjected to significant moments that lead to tensile stresses in the longitudinal reinforcement. If a lap splice 
	In recent decades, seismic fragility curves have been used extensively to evaluate the damage risk associated with bridge components and the structure as a whole [7–10]. Fragility curves depict the conditional probability of a structural component reaching or exceeding a limit state given the intensity measure of the earthquake. Researchers have developed several ways to 
	quantify the vulnerability of structures [9,10]. Analytical fragility curves are utilized in this study to assess the impact of the latest AASHTO LRFD Bridge Design Specifications [1] on highway bridges in Georgia. These curves are used to estimate the associated seismic damage risk as a function of seismic hazard levels in various regions in the state.   
	1.2 Objectives and Scope of Research 
	The goal of this research is to evaluate the seismic performance and fragility of multi-span highway bridges of varying classes in Georgia considering the latest AASHTO LRFD seismic design provisions. Based on the results, the study aims to provide recommendations to the Georgia Department of Transportation (GDOT) regarding seismic detailing for multi-span bridges to be built in the future.  
	The following are the specific tasks that have been completed in this research: 
	1. Review commonly used detailing practices in the Bridge and Structures Design Manual [4] in the current design codes and compare them with the latest seismic design provisions in AASHTO LRFD Bridge Design Specifications [1]. 
	1. Review commonly used detailing practices in the Bridge and Structures Design Manual [4] in the current design codes and compare them with the latest seismic design provisions in AASHTO LRFD Bridge Design Specifications [1]. 
	1. Review commonly used detailing practices in the Bridge and Structures Design Manual [4] in the current design codes and compare them with the latest seismic design provisions in AASHTO LRFD Bridge Design Specifications [1]. 

	2. Perform a literature review of previous research on seismic detailing, including the impacts of lap splice and transverse reinforcement on column performance. To analyze the effect of lap splices, develop a stress–strain curve for the lap-spliced section based on the truss-based force transfer mechanism model to evaluate its impact on columns. 
	2. Perform a literature review of previous research on seismic detailing, including the impacts of lap splice and transverse reinforcement on column performance. To analyze the effect of lap splices, develop a stress–strain curve for the lap-spliced section based on the truss-based force transfer mechanism model to evaluate its impact on columns. 

	3. Develop seismic hazard maps and design response spectra for various regions in the state of Georgia to estimate the expected peak ground accelerations (PGA) in these regions.  
	3. Develop seismic hazard maps and design response spectra for various regions in the state of Georgia to estimate the expected peak ground accelerations (PGA) in these regions.  


	4. Develop three-dimensional analytical models of selected multi-span bridges based on Georgia bridge plans and models of lap splice and transverse reinforcement to assess their seismic performance. 
	4. Develop three-dimensional analytical models of selected multi-span bridges based on Georgia bridge plans and models of lap splice and transverse reinforcement to assess their seismic performance. 
	4. Develop three-dimensional analytical models of selected multi-span bridges based on Georgia bridge plans and models of lap splice and transverse reinforcement to assess their seismic performance. 

	5. Perform deterministic seismic analyses considering the current practices used in Georgia and the latest AASHTO LRFD Bridge Design Specifications [1] to assess the performance differences between the two sets of design guidance. 
	5. Perform deterministic seismic analyses considering the current practices used in Georgia and the latest AASHTO LRFD Bridge Design Specifications [1] to assess the performance differences between the two sets of design guidance. 

	6. Generate probabilistic seismic demand models and fragility curves as a function of lap splice length and transverse reinforcement spacing to estimate the associated seismic damage risk. 
	6. Generate probabilistic seismic demand models and fragility curves as a function of lap splice length and transverse reinforcement spacing to estimate the associated seismic damage risk. 

	7. Provide recommendations to GDOT for bridges to be built in the future based on the obtained results. 
	7. Provide recommendations to GDOT for bridges to be built in the future based on the obtained results. 


	 
	1.3 Outline 
	The report is organized into eight chapters: 
	Chapter 2 presents an overview of past research conducted on seismic detailing highlighting the importance of providing adequate lap splice and transverse reinforcement, especially in columns in seismically active regions. This chapter also presents the stress–strain formulation used to study the lap splice behavior and effects of various geometric parameters on the lap splice strength. 
	Chapter 3 presents assessments of the seismic hazard for Site Classes A, B, C, D, and E in the state of Georgia. The state is divided into six regions based on the potential peak ground 
	acceleration in these regions. This chapter further provides an overview of the bridge inventory in the state of Georgia.  
	Chapter 4 summarizes the mathematical framework employed to formulate the analytical fragility curves in the study, along with the limit state capacity and probabilistic seismic demand model definitions. 
	Chapter 5 presents the characteristics of the representative bridges investigated for each of the three bridge classes analyzed in the study: (1) multi-span simply supported concrete girder bridges, (2) multi-span continuous steel girder bridges, (3) and multi-span simply supported steel girder bridges. This chapter further explores the effect of lap splice and transverse reinforcement spacing on the columns and bearings of the bridge.  
	Chapter 6 presents the seismic fragility curves for each of the bridge classes. It evaluates the site-specific fragility damage risk estimates for columns to determine the appropriate seismic detailing requirements in terms of lap-splice and pile-bent specifications for various regions in the state of Georgia. 
	Chapter 7 presents the effects of the AASHTO LRFD required transverse reinforcement spacings on column responses. 
	Chapter 8 presents the key contributions of the research, along with recommendations based on the analysis results. 
	 
	 
	 
	CHAPTER 2 LAP SPLICE REINFORCEMENT AND TRANSVERSE REINFORCEMENT 
	Studies on lap splices began in the mid-1970s when several bridge columns suffered severe damage and collapse during moderate-intensity earthquakes. Researchers conducted experimental tests to investigate the impact of lap-splice lengths and transverse detailing on column strength and ductility. Following an introductory section, this chapter provides a summary of those studies and highlights the impacts of lap splice lengths and transverse reinforcement detailing on column strength and ductility. The third
	 
	2.1 Introduction 
	This study focuses on seismic detailing of highway bridges located in the state of Georgia. Many of these bridges were built before specifications for seismic design such that lap splices were often at the column bases and transverse reinforcement was widely spaced. Therefore, these factors lead to increased potential seismic risk for bridges built before 1970. The first instance of the need for seismic detailing was recognized in the San Fernando earthquake in 1971. Despite being considered an earthquake o
	This study focuses on seismic detailing of highway bridges located in the state of Georgia. Many of these bridges were built before specifications for seismic design such that lap splices were often at the column bases and transverse reinforcement was widely spaced. Therefore, these factors lead to increased potential seismic risk for bridges built before 1970. The first instance of the need for seismic detailing was recognized in the San Fernando earthquake in 1971. Despite being considered an earthquake o
	Figure 2.1
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	, the columns of the viaduct could not support the superstructure, leading to the death of 42 people by falling roadway. Most of the other bridges 

	that collapsed in the Loma Prieta earthquake were constructed before 1971 and lacked seismic detailing requirements [11]. 
	 
	Figure
	Figure 2.1 – Column Failure Leading to Substructure Collapse of Cypress Viaduct in Oakland, California. 
	A similar type of failure was identified in the 1995 Kobe, Japan, earthquake in which a 630 m intermediate segment of the Hanshin Expressway supported by 18 circular columns failed, as shown in 
	A similar type of failure was identified in the 1995 Kobe, Japan, earthquake in which a 630 m intermediate segment of the Hanshin Expressway supported by 18 circular columns failed, as shown in 
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	. Post-earthquake investigations revealed that poor transverse column reinforcement, improper anchorage of longitudinal reinforcement, and lack of study of soil-structure interactions led to overturning of the complete bridge in the transverse direction [12]. Investigators also found that the longitudinal reinforcement bars joined together using butt welding at the base of the columns lacked flexural strength, which was a cause of failure. 
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	Figure 2.2 – Overturning Failure of Bridge Segment on Hanshin Expressway due to Inadequate Transverse Reinforcement, Improper Longitudinal Reinforcement Anchorage, and Soil-Structure Interactions. 
	The substructure for any bridge plays an important role in transferring all types of loads imposed on the bridge to the ground. Failure of seismically inadequate columns has led to severe damage or collapse of bridges in the past. Of course, the seismic hazard in the state of Georgia differs from these cases. However, the risk in Georgia and recent LRFD Specifications warrant an in-depth analysis of column detailing in Georgia relative to the seismic risk of bridges.  
	2.2 Literature Review 
	The earliest experimental research on lap splices was conducted by Orangun et al. [13], who developed an empirical design equation for development and lap splice length in terms of steel stress, concrete strength, bar diameter, concrete cover, and transverse reinforcement. This 
	equation was adopted into the 1989 American Concrete Institute (ACI) Building Codes. These equations were later revised by experimental tests carried out by Sozen and Moehle [14]. 
	In the same decade, Cairns and Arthur carried out an experimental test in which they evaluated responses from 51 columns with smooth and roughened longitudinal bars under lateral cyclic loading [15]. The conclusion from their research was that lap-spliced sections in tension and compression have significantly different responses. Further, columns with roughened bars performed significantly better than columns with smooth bars. 
	Studies by Paulay et al. revealed the importance of confinement by transverse reinforcement in spliced column sections [16]. They performed experimental tests on 12 specimens and found that despite insufficient lap splice length, well-confined columns could develop tensile yield stress in the longitudinal reinforcement and maintain their lateral load capacity up to high displacement ductility of about 4. 
	Lynn et al. investigated the impact of longitudinal reinforcement ratio and transverse spacing on lap-spliced columns from pre-1970 [17]. The test specimens included eight 18-inch-square columns out of which five had continuous reinforcement and three had lap splices at the bottom of the columns. These columns were subjected to reversed cyclic lateral displacements under a vertical load. The findings of the research revealed that the columns with a low reinforcement ratio subjected to low axial stresses sho
	Melek and Wallace [18] conducted a similar study to examine the effects of lap-splices on short columns through experimental tests. The columns in their experiments were subjected to lateral cyclic loading while under axial compression, as shown in 
	Melek and Wallace [18] conducted a similar study to examine the effects of lap-splices on short columns through experimental tests. The columns in their experiments were subjected to lateral cyclic loading while under axial compression, as shown in 
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	. Their findings revealed that inadequate confining reinforcement led to bond deterioration between reinforcement bars and surrounding concrete. This led to steep degradation in the strength of columns at lateral drift ratios of 1.0% to 1.5%. Later, Cho and Pincheira proposed an analytical modeling approach using different bond–slip relationships [19] to match the experimental results by Melek and Wallace [18]. 

	 
	Figure
	Figure 2.3 – Test Setup Used by Melek and Wallace [18] for Lateral Cyclic Loading of Columns. 
	Another study to investigate the effect of lap splices on beams was conducted by Harajli et al. [20]. They evaluated the stress–strain relationship based on the bond–slip behavior between steel and concrete when the beams were subjected to a four-point flexural test with the lap splice in the middle. Wu et al. conducted a similar study on lap-spliced beam sections with enamel-coated reinforcing bars and found that enamel coating increases the bond strength of deformed rebars in normal strength concrete [21]
	Recently, studies have been conducted to evaluate the response of lap-spliced sections in high-strength concrete members [22–24]. These studies show a similar response to earlier specimens and highlight the importance of adequate lap splice lengths and transverse detailing for improved column performance. While these studies mostly focus on the strength evaluation in the lap splice sections, several studies have been carried out to improve the strength of lap-spliced columns and beams through steel and fibe
	All of these studies reveal a significant need for adequate lap splice length and transverse detailing to improve the response of columns under lateral cyclic loading. The objective of this study is to assess the impacts of these parameters on seismic performance for highway bridges in Georgia with non-seismic details compared to the latest AASHTO LRFD Bridge Design Specifications [1] by the means of fragility curves. 
	2.3 Lap Splice Formulation 
	The force transfer phenomenon in a lap-spliced section follows a complex mechanism (Figure 2.4(a)). However, simplifications can be made based on mechanistic principles to model its behavior. Traditionally, two mechanisms have been used to do this: bond mechanism and truss mechanism [28]. In a structural member, both mechanisms act together. For modeling purposes, it is fair to assume that either of the mechanisms dominates. 
	The basic principle of the bond mechanism is that the lugs on the reinforcement bar exert a bearing force on the surrounding concrete at an angle. The component of this force parallel to the axis of the rebar causes shearing stress in the concrete, and the normal component of this force exerts a radial stress on concrete causing splitting of concrete. When the resultant stress exceeds 
	the tensile capacity of concrete, the concrete is no longer able to take the bearing force exerted by the reinforcement lugs, and failure of the section occurs. 
	In the truss mechanism, a simple truss model is used to calculate the force transfer between the lap-spliced bars and the surrounding concrete. Priestley et al. [29] proposed the truss system methodology to model the approximate response of the longitudinal reinforcement in a lap-spliced section in tension. Tariverdilo et al. [30] used the truss mechanism model to evaluate the fragility functions for reinforced concrete (RC) frames with lap-spliced columns and matched the results with the experimental work 
	Figure 2.4
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	(b) represents the stress–strain model behavior of the truss system to model the approximate response of the lap-spliced bars. In this model, the lap splice section reaches the maximum peak strength, 𝑓𝑠,𝑚𝑎𝑥, until the surrounding concrete splits. At that point, the section experiences a steep softening behavior due to splitting of surrounding concrete until it reaches the point of constant frictional stress, 𝑓𝑟, developed across the failure interface. The corresponding strain values are 𝜀𝑠 and 𝜀𝑟

	 
	Figure
	Figure
	                    (a)                            (b) 
	Figure 2.4 – Lap Splice Reinforcement: (a) Mechanism, and (b) Stress–Strain Curve for a Numerical Model. 
	The truss analogy assumes development of a uniform compressive field across the spliced bars at an angle approximately equal to 45°. The concrete surrounding the lap splice acts as compression struts to transfer the load between the bars. The mechanism considers the lap splice failure by considering the formation of fracture surfaces perpendicular to the column surface to allow the relative movement between bars. With each longitudinal bar, an associated characteristic concrete block, as depicted in 
	The truss analogy assumes development of a uniform compressive field across the spliced bars at an angle approximately equal to 45°. The concrete surrounding the lap splice acts as compression struts to transfer the load between the bars. The mechanism considers the lap splice failure by considering the formation of fracture surfaces perpendicular to the column surface to allow the relative movement between bars. With each longitudinal bar, an associated characteristic concrete block, as depicted in 
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	, of length equal to the lap splice length, 𝑙𝑠, and perimeter, 𝑝, is assumed to contribute to the splice strength. 

	The perimeter, 𝑝, of the characteristic concrete block for rectangular and circular column cross section can be calculated as follows: 
	 
	 
	 
	 
	 

	𝑝=𝑠𝑙2+2(𝑑𝑏+𝑐)≤2√2 (𝑑𝑏+𝑐) 
	𝑝=𝑠𝑙2+2(𝑑𝑏+𝑐)≤2√2 (𝑑𝑏+𝑐) 

	(1) 
	(1) 




	where 𝑠𝑙 is the center-to-center spacing between the longitudinal bars, 𝑑𝑏 is the diameter of the longitudinal bars, and 𝑐 is the clear concrete cover. For a circular column cross section, the perimeter of the characteristic block can be written as: 
	 
	 
	 
	 
	 

	𝑝=𝜋𝐷2𝑛+2(𝑑𝑏+𝑐)≤2√2 (𝑑𝑏+𝑐) 
	𝑝=𝜋𝐷2𝑛+2(𝑑𝑏+𝑐)≤2√2 (𝑑𝑏+𝑐) 

	(2) 
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	where 𝑛 is the number of evenly distributed longitudinal bars around the core of diameter, 𝐷, of the column. MacKay et al. concluded that the confined concrete did not add much to the lap splice strength in the case of cyclic loading; hence, the derivation ignores the strength contribution to the lap splice section due to the confined concrete [32]. 
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	Figure 2.5 – Characteristic Block for (a) Circular, and (b) Square Column. 
	Thus, satisfying the equilibrium of the free body diagram of the system, the maximum force, 𝑇𝑏, in the longitudinal reinforcement bar can be expressed in terms of concrete tensile strength, 𝑓𝑡, as follows: 
	 
	 
	 
	 
	 

	 𝑇𝑏=𝐴𝑏 𝑓𝑠=𝑓𝑡 𝑝𝑙𝑠 
	 𝑇𝑏=𝐴𝑏 𝑓𝑠=𝑓𝑡 𝑝𝑙𝑠 

	(3) 
	(3) 




	where 𝐴𝑏 is cross-sectional area of longitudinal bar, 𝑝 is perimeter of cylindrical block, and 𝑙𝑠 is length of lap splice. Once the lap splice section reaches its maximum stress capacity, 𝑓𝑠, the stress drops down to a constant value of residual stress, 𝑓𝑟. The residual stress can be calculated by the shear-friction concept by estimating the shear force contribution by the transverse reinforcement crossing the cracked plane as follows: 
	 
	 
	 
	 
	 

	 𝜇𝑛𝑙𝑛𝑡𝐴ℎ𝑓ℎ=𝑛𝐴𝑏𝑓𝑟 
	 𝜇𝑛𝑙𝑛𝑡𝐴ℎ𝑓ℎ=𝑛𝐴𝑏𝑓𝑟 

	(4) 
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	where 𝜇 is frictional factor, which is taken as 1.4, 𝑛𝑙 denotes the number of transverse reinforcement legs perpendicular to the cracked plane, 𝑛𝑡 the number of transverse reinforcement bars crossing the cracked plane, 𝐴ℎ the crack surface area, 𝑓ℎ the yield strength of the transverse reinforcement, and 𝑛 the number of longitudinal rebars in the tension side of the column. 
	The strain can be taken equal to the elastic yield strain of the bar; however, Tariverdilo et al. assumed an additional slip displacement, 𝑢, equal to 1 mm at yield point that must be added to the elastic strain [30]. This additional displacement is assumed to occur due to the bar slip over a fictitious length, 𝑙𝑠𝑠. This length is different from the lap splice length. Tariverdilo evaluated the impact of lap splice on estimated risk of reinforced concrete columns assuming that the slip occurs over a leng
	 
	 
	 
	 
	 

	 𝜀𝑠=𝑓𝑠𝐸𝑆+𝑢𝑙𝑠𝑠 
	 𝜀𝑠=𝑓𝑠𝐸𝑆+𝑢𝑙𝑠𝑠 
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	where 𝐸𝑆 is the elastic modulus of the rebar.  
	At residual stress, 𝑓𝑟, the strain, 𝜀𝑟, is calculated by assuming a slip, 𝑢, equal to 10 mm that is approximately equal to the lug distance on the bar and can be written as: 
	 
	 
	 
	 
	 

	 𝜀𝑟=𝑢𝑙𝑠𝑠 
	 𝜀𝑟=𝑢𝑙𝑠𝑠 
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	2.4 Effects of Variables on the Strength of Lap Splice Reinforcement 
	From the equations discussed in Section 
	From the equations discussed in Section 
	2.3
	2.3

	, the lap splice strength is a function of several variables, such as lap splice length, column cross section, reinforcement ratio, etc. Therefore, it is desirable to investigate the impacts of these variables on the lap splice strength. The following subsections present a parametric study on the strength of the lap splice due to each of these variables. To isolate the effect of one variable, other variables are kept constant and equal to the most commonly used values in Georgia bridge columns.  

	2.4.1 Effect of Lap Splice Length  
	An adequate lap splice length is required to transfer the force from one rebar to another in a spliced section. While most of the experimental tests on lap splice lengths show that it has an important role to play in the splice strength, Paulay stated that increasing length of a lap splice in columns in case of cyclic loading is of very little benefit because of the “unzipping” effect [33]. 
	Despite the plethora of research on the impact of lap splices, there is no clear agreement between the relation of the lap splice length and column capacity. In this study, this relation is investigated using a numerical analysis.  
	From Equation 3, the maximum stress developed in the lap splice is directly proportional to its length. In the present study, the effect of length of the spliced section is evaluated for the range of commonly used splice spacing in the state of Georgia. The inventory analysis revealed that older highway bridge columns in Georgia used lap splices as short as 4.5-ft However, the most commonly used lap splice lengths are 6.5-ft and 9-ft. 
	From Equation 3, the maximum stress developed in the lap splice is directly proportional to its length. In the present study, the effect of length of the spliced section is evaluated for the range of commonly used splice spacing in the state of Georgia. The inventory analysis revealed that older highway bridge columns in Georgia used lap splices as short as 4.5-ft However, the most commonly used lap splice lengths are 6.5-ft and 9-ft. 
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	 shows the stress–strain plot for these two lap splice lengths for a typical bridge column layout used in Georgia. This column has a height of 18-ft and cross-sectional dimensions of 3-ft by 3-ft. The transverse reinforcement spacing is 12-in.
	 

	 
	Figure
	Figure 2.6 – Lap Splice Stress–Strain Plot for Commonly Used Splice Lengths of 6.5-ft and 9-ft in Georgia. 
	Figure 2.7
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	 also shows the impact of the lap splice lengths ranging from 4-ft to 14-ft. on the peak stress and residual stress of the lap splice of the same column. Interestingly, the peak stress is not affected by the change in length of the spliced section. On the other hand, the residual stress 

	shows a steep increase as the length of the lap splice increases. For this column configuration, the residual strength of the spliced section matches the peak strength at about a lap splice length of 11-ft. Note that 𝑓𝑦𝑠 is yield strength of steel. 
	 
	Figure
	Figure 2.7 – Effect of Change in Lap Splice Length on Peak and Residual Stress of Spliced Section. 
	2.4.2 Effect of Transverse Reinforcement 
	 Hamad and Najjar have documented the effects of transverse reinforcement on a spliced section through experimental tests [22]. Their research revealed that the presence of adequate transverse reinforcement helps reduce cracking along the lap splice length, significantly improving the ductility of the columns. This is in agreement with the findings of many other researchers who used experimental results to assess the effect of confinement on lap splices [24,34].  
	Adequate transverse reinforcement spacing not only helps to confine the core concrete in a structural member but also allows the lap splice section to develop enough shear friction after its strength goes past the peak strength. This effect depends on the type (such as hoops, spiral, or ties) and shape (such as circular, square, or rectangular) of confining transverse reinforcement. To 
	model the effect of confinement on concrete, a widely accepted stress–strain model of concrete formulated by Mander et al. is used in this study [35]. The effect of confinement on the post-peak lap splice strength is evaluated using Equation 4.  
	Before the introduction of the AASHTO LRFD Bridge Design Specifications [1] into the GDOT manual [4], the most commonly used reinforcement spacing for Georgia bridge columns was 12-in. (see 
	Before the introduction of the AASHTO LRFD Bridge Design Specifications [1] into the GDOT manual [4], the most commonly used reinforcement spacing for Georgia bridge columns was 12-in. (see 
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	). However, the latest seismic design provisions suggest that the transverse spacing should not exceed one-quarter of the minimum member dimension or 4-in. center-to-center. In the present study, the effect of transverse reinforcement spacing is studied for the lap splice length of 6.5-ft. The column reinforcement detailing for this case is as it was in Section 
	2.4.1
	2.4.1

	. 

	 
	Figure
	Figure 2.8 – Lap Splice Stress–Strain Plot for Commonly Used Transverse Spacing of 12-in. in Georgia. 
	Figure 2.9
	Figure 2.9
	Figure 2.9

	 depicts the effect of transverse spacing on the lap splice behavior. Similar to the effect of the lap splice length, the peak strength is not affected by the change in transverse reinforcement spacing. On the other hand, the residual strength of the lap splice drops considerably as the transverse reinforcement spacing exceeds about 5.5-in. for this cross section.  

	 
	Figure
	Figure 2.9 – Effect of Change in Transverse Reinforcement Spacing on Peak and Residual Stress of Spliced Section. 
	2.4.3 Effect of Steel Yield Strength 
	According to Equation 4, the steel yield strength plays an important role in development of the bond between the steel rebars and the surrounding concrete. The steel strength governs the level of forces that can be transferred through the steel–concrete interface in a spliced section. Moreover, the stress–strain curve of the steel reinforcement also governs the bond slip and strength characteristics, which can lead to splitting and shear failures.  
	The commonly used longitudinal steel rebars in Georgia bridge columns have yield strengths of either 40 ksi or 60 ksi. Figure 2.10 shows the variation of stress and strain for varying yield strengths. 
	 
	Figure
	Figure 2.10 – Lap Splice Stress–Strain Plot for Commonly Used Steels in Georgia. 
	2.4.4 Effect of Rebar Diameter 
	In addition to the yield strength, the diameter of the reinforcement bars also affects the stress–strain curve of a spliced section. The ratio of cross-sectional to surface area of the rebar is directly proportional to the diameter of the rebar. This ratio impacts the bond stress concentration in the rebar. 
	The most commonly used rebar size for Georgia bridges is #11. 
	The most commonly used rebar size for Georgia bridges is #11. 
	Figure 2.11
	Figure 2.11

	 shows the stress–strain curve for a typical Georgia column when 12 equally spaced #11 rebars are used as longitudinal reinforcement. 

	 
	Figure
	Figure 2.11 – Lap Splice Stress–Strain Plot for Commonly Used #11 Rebar in Georgia. 
	Additionally, 
	Additionally, 
	Figure 2.12
	Figure 2.12

	 shows 
	the 
	effect
	 
	of the 
	rebar diameter
	 
	on the lap splice
	. Larger 
	diameters for spliced sections show a steep reduction in residual stress that could lead to ductility 
	degradation of the struc
	tural member. The steep reduction in the post
	-
	peak strength is due to larger 
	bond stress concentrations resulting from a greater cross
	-
	section area to surface area ratio for larger 
	diameter rebars. 
	 

	 
	Figure
	Figure 2.12 – Effect of Change in Longitudinal Rebar Diameter on Peak and Residual Stress of Spliced Section. 
	2.5 Effects of Transverse Reinforcement on Concrete and Reinforcement 
	The provisions 5.10.11.4.1d and e in the 2014 AASHTO LRFD Bridge Design Specifications [1] specify that the cores of columns and pile bents must be confined by transverse reinforcement in the expected plastic hinge regions. The spacing of the transverse reinforcement must be taken as specified in provision 5.10.11.4.1e. The main function of the transverse reinforcement specified in these provisions is: (1) to ensure that the axial load carried by the column after spalling of the concrete cover will at least
	In this section, seismic-designed columns (#5 bars @ 4-in. o.c. transverse reinforcement) are compared to non-seismic-designed columns (#4 bars @ 12-in. o.c. transverse reinforcement), in both square and circular configurations. The columns used are based on typical Georgia bridges, using a concrete strength of 3500 psi and steel yield strength of 60,000 psi. Column details are shown in Figure 2.13, and all columns are 192-in. (16-ft) in height.  
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	Figure
	Figure 2.13 – Typical GA Columns with 4-in. vs. 12-in. Spacings. 
	First, a material analysis was performed, as shown in Figure 2.14. Confinement provided by the transverse reinforcement is clearly represented, and circular sections show better confinement than squared sections, as expected. The impact of the transverse reinforcement spacing on the longitudinal steel’s buckling behavior on the compression side is evident. Additional analyses comparing performance of columns with various transverse reinforcement spacings in the plastic hinges, including #3 @ 3-in., #6 @ 4-i
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	Figure 2.14 – Effects of Various Transverse Reinforcement Spacing on  (a) Concrete, and (b) Longitudinal Reinforcement Models. 
	Figure 2.14 – Effects of Various Transverse Reinforcement Spacing on  (a) Concrete, and (b) Longitudinal Reinforcement Models. 
	Figure 2.14 – Effects of Various Transverse Reinforcement Spacing on  (a) Concrete, and (b) Longitudinal Reinforcement Models. 




	CHAPTER 3 GEORGIA SEISMIC HAZARD MAPS AND BRIDGE INVENTORY ANALYSIS 
	To assess the impact of the LRFD Seismic Bridge Design Specifications in Georgia, it is important to determine the potential hazard associated with earthquakes in different parts of the state. Seismic Design Response Spectra and seismic maps based on five site classes, A through E, are developed in this chapter. Additionally, a thorough bridge inventory is conducted to determine the key bridge types to study. This chapter provides an analysis of the bridge inventory for the state of Georgia based on the Nat
	 
	3.1 Georgia Design Response Spectrum and Seismic Zones 
	Natural hazards can impose severe demands on any type of structure. Seismic detailing has the potential to decrease the probability of damage due to earthquakes during a structure’s service life. Hence, design codes and specifications are being continually revised and updated to incorporate any new information gained from experience, research, etc. Bridges should have considerable ductility and deformability to resist earthquake forces. With the idea of performance-based earthquake engineering (PBEE), the l
	(EDPs) such as curvature ductility, displacement, and drift ratio. In this study, such EDPs are employed to measure the damage of various components of the bridge. 
	Bridges that are in accordance with the LRFD provisions are expected to resist low to moderate seismic loads. In the event of high seismic loads, bridges are expected to suffer significant damage; however, they should have a low probability of collapse. Keeping this performance objective in mind, seismic hazard is defined based on a 1000-year design return period earthquake, which corresponds to 7% probability of exceedance in 75 years. 
	The AASHTO LRFD Bridge Design Specifications [1] require that the seismic hazard at a location be characterized based on the acceleration spectrum of the location and relevant site factors. There are two procedures for determining the acceleration spectrum given in the code: a) General Procedure, and b) Site-Specific Procedure. The specification lists four conditions as to when the Site-Specific Procedure must be followed. However, as this study focuses on an overall analysis of bridges across the state of 
	The General Procedure uses the peak ground acceleration coefficient, 𝑃𝐺𝐴; short-period spectral acceleration, 𝑆𝑆; and long-period spectral acceleration, 𝑆1, to establish the design spectral acceleration curve. These coefficients can be obtained from the seismic design hazard maps developed by United States Geological Survey (USGS) for the 2007 AASHTO Specifications. For the state of Georgia, the maps for obtaining the ground acceleration coefficient, and short-period and long period accelerations are 
	The General Procedure uses the peak ground acceleration coefficient, 𝑃𝐺𝐴; short-period spectral acceleration, 𝑆𝑆; and long-period spectral acceleration, 𝑆1, to establish the design spectral acceleration curve. These coefficients can be obtained from the seismic design hazard maps developed by United States Geological Survey (USGS) for the 2007 AASHTO Specifications. For the state of Georgia, the maps for obtaining the ground acceleration coefficient, and short-period and long period accelerations are 
	Figure 3.1
	Figure 3.1

	. These coefficients are only valid for rock site conditions (Site Class B), which is taken as the reference site class in the specification. Different site class adjustment factors are provided to account for the effects of other site classes. 

	All of these coefficients are in accordance with performance based on a 1000-year return period and consider performance-based design objectives.  
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	Figure 3.1 – Map of Georgia Depicting Contour Lines for Seismic Site Class B for (a) Horizontal PGA Coefficient; (b) Horizontal Response Spectral Acceleration Coefficient at Period 0.2 Seconds (SS); and (c) Horizontal Response Spectral Acceleration Coefficient at Period 1.0 Second (S1) [1]. 
	The surrounding soil type can have a significant impact on the forces that are transmitted to a structure. To incorporate the site conditions, the specification classifies a site as A through F, per the site class definitions. These site class definitions are based on the type of soil and average 
	shear wave for the upper 100-ft of the soil profile. Site adjustment factors,  𝐹𝑃𝐺𝐴  (for 𝑃𝐺𝐴) in 
	shear wave for the upper 100-ft of the soil profile. Site adjustment factors,  𝐹𝑃𝐺𝐴  (for 𝑃𝐺𝐴) in 
	Table 3-1
	Table 3-1

	, 𝐹𝑎 (for 𝑆𝑆) in 
	Table 3-2
	Table 3-2

	, and 𝐹𝑣 (for 𝑆1) in 
	Table 3-3
	Table 3-3

	, are used to determine the site-specific acceleration spectrum coefficients, 𝐴𝑆, 𝑆𝐷𝑆, and 𝑆𝐷1, respectively. These coefficients are then used to plot the design spectral acceleration curve for a region as per 
	Figure 3.2
	Figure 3.2

	. 

	 
	Figure
	Figure 3.2 – Design Response Spectrum [1]. 
	Table 3-1 – Values of Site Factor, FPGA, at Zero Period on Acceleration Spectrum [1]. 
	Table
	TBody
	TR
	Span
	Site Class 
	Site Class 

	Peak Ground Acceleration Coefficient 
	Peak Ground Acceleration Coefficient 


	TR
	Span
	PGA < 0.10 
	PGA < 0.10 

	PGA = 0.20 
	PGA = 0.20 

	PGA = 0.30 
	PGA = 0.30 

	PGA = 0.40 
	PGA = 0.40 

	PGA =0.50 
	PGA =0.50 


	TR
	Span
	A 
	A 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 


	B 
	B 
	B 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 


	C 
	C 
	C 

	1.2 
	1.2 

	1.2 
	1.2 

	1.1 
	1.1 

	1.0 
	1.0 

	1.0 
	1.0 


	D 
	D 
	D 

	1.6 
	1.6 

	1.4 
	1.4 

	1.2 
	1.2 

	1.1 
	1.1 

	1.0 
	1.0 


	TR
	Span
	E 
	E 

	2.5 
	2.5 

	1.7 
	1.7 

	1.2 
	1.2 

	0.9 
	0.9 

	0.9 
	0.9 




	 
	Table 3-2 – Values of Site Factor, Fa, for Short Period Range of Acceleration Spectrum [1]. 
	Table
	TBody
	TR
	Span
	Site Class 
	Site Class 

	Spectral Acceleration Coefficient at Period 0.2 second 
	Spectral Acceleration Coefficient at Period 0.2 second 


	TR
	Span
	SS < 0.25 
	SS < 0.25 

	SS = 0.50 
	SS = 0.50 

	SS = 0.75 
	SS = 0.75 

	SS = 1.00 
	SS = 1.00 

	SS > 1.25 
	SS > 1.25 


	TR
	Span
	A 
	A 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 


	B 
	B 
	B 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 


	C 
	C 
	C 

	1.2 
	1.2 

	1.2 
	1.2 

	1.1 
	1.1 

	1.0 
	1.0 

	1.0 
	1.0 


	D 
	D 
	D 

	1.6 
	1.6 

	1.4 
	1.4 

	1.2 
	1.2 

	1.1 
	1.1 

	1.0 
	1.0 


	TR
	Span
	E 
	E 

	2.5 
	2.5 

	1.7 
	1.7 

	1.2 
	1.2 

	0.9 
	0.9 

	0.9 
	0.9 




	 
	Table 3-3 – Values of Site Factor, Fv, for Long Period Range of Acceleration Spectrum [1]. 
	Table
	TBody
	TR
	Span
	Site Class 
	Site Class 

	Spectral Acceleration Coefficient at Period 1.0 second 
	Spectral Acceleration Coefficient at Period 1.0 second 


	TR
	Span
	S1 < 0.10 
	S1 < 0.10 

	S1 = 0.20 
	S1 = 0.20 

	S1 = 0.30 
	S1 = 0.30 

	S1 = 0.40 
	S1 = 0.40 

	S1 > 0.50 
	S1 > 0.50 


	TR
	Span
	A 
	A 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 

	0.8 
	0.8 


	B 
	B 
	B 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 

	1.0 
	1.0 


	C 
	C 
	C 

	1.7 
	1.7 

	1.6 
	1.6 

	1.5 
	1.5 

	1.4 
	1.4 

	1.3 
	1.3 


	D 
	D 
	D 

	2.4 
	2.4 

	2.0 
	2.0 

	1.8 
	1.8 

	1.6 
	1.6 

	1.5 
	1.5 


	TR
	Span
	E 
	E 

	3.5 
	3.5 

	3.2 
	3.2 

	2.8 
	2.8 

	2.4 
	2.4 

	2.4 
	2.4 




	 
	In the present study, Site Classes A to E are examined and the design response spectra for these site classes, using the above-mentioned coefficients, are shown in 
	In the present study, Site Classes A to E are examined and the design response spectra for these site classes, using the above-mentioned coefficients, are shown in 
	Figure 3.3
	Figure 3.3

	. Note 𝑆𝑎 is spectral acceleration in units of gravitational acceleration g. All site classes except Site Class F are considered to account for any data collected on soil properties in Georgia. Site Class F requires site-specific investigations to determine the influence of the local site conditions on the structure and a site-specific procedure to determine the design acceleration response spectrum, which were outside the scope of this study.  

	 
	Figure
	Figure 3.3 – Georgia Design Response Spectra for Site Classes A, B, C, D, and E. 
	To estimate the seismic vulnerability of highway bridges in Georgia, an appropriate suite of ground motions is essential. Due to unavailability of historic ground motion records, particularly at the intensities required for this research, previous studies have used artificially generated ground motions to study earthquakes in the central and southeastern United States (CSUS). Nielson [8] used Rix and Fernandez-Leon [36] to provide ground motion suites to determine seismic vulnerability of highway bridges in
	To estimate the seismic vulnerability of highway bridges in Georgia, an appropriate suite of ground motions is essential. Due to unavailability of historic ground motion records, particularly at the intensities required for this research, previous studies have used artificially generated ground motions to study earthquakes in the central and southeastern United States (CSUS). Nielson [8] used Rix and Fernandez-Leon [36] to provide ground motion suites to determine seismic vulnerability of highway bridges in
	Figure 3.4
	Figure 3.4

	 shows a plot of the spectral acceleration values for a range of structural time periods obtained from these 48 ground motions. 

	 
	Figure
	Figure 3.4 – Spectral Acceleration Plot for a Range of Time Periods for the 48 Rix and Fernandez-Leon Ground Motion Suite. 
	As performance is the main criterion to be followed while designing a bridge using a PBEE methodology, the code suggests classifying the region under study into seismic zones. While designing a bridge for earthquake effects, these zones help the designer determine the type of analysis, detailing requirements, etc., to be used for the bridge. The greater the zone number, the more rigorous the design should be. 
	As performance is the main criterion to be followed while designing a bridge using a PBEE methodology, the code suggests classifying the region under study into seismic zones. While designing a bridge for earthquake effects, these zones help the designer determine the type of analysis, detailing requirements, etc., to be used for the bridge. The greater the zone number, the more rigorous the design should be. 
	Table 3-4
	Table 3-4

	 shows the boundaries that are used to define these zones; these boundaries are based on the design spectral acceleration coefficient at 1 second, 𝑆𝐷1. Although the LRFD code specifies only four zones, Seismic Zone 1 is subdivided into two subzones, Seismic Zones 1-A and 1-B, for this study based on recommendations by GDOT. 

	Table 3-4 – Seismic Zone Boundaries. 
	Table
	TBody
	TR
	Span
	Seismic Zone 
	Seismic Zone 

	Acceleration Coefficient Range 
	Acceleration Coefficient Range 


	TR
	Span
	1-A 
	1-A 

	𝑆𝐷1<0.10 
	𝑆𝐷1<0.10 


	1-B 
	1-B 
	1-B 

	0.10≤𝑆𝐷1<0.15 
	0.10≤𝑆𝐷1<0.15 


	2 
	2 
	2 

	0.15≤𝑆𝐷1<0.30 
	0.15≤𝑆𝐷1<0.30 


	3 
	3 
	3 

	0.30≤𝑆𝐷1<0.50 
	0.30≤𝑆𝐷1<0.50 


	TR
	Span
	4 
	4 

	𝑆𝐷1≥0.50 
	𝑆𝐷1≥0.50 




	  
	As these zone definitions are based on 𝑆𝐷1, they incorporate the local seismic and site effects. Therefore, a site with rocky site conditions might fall under a different seismic zone than a nearby site that has soft soil conditions. This concept is elaborated on in the next section, which presents the seismic zone maps for all the site classes for Georgia. 
	3.2 Georgia Site-Specific Seismic Hazard Maps 
	Seismic hazard maps are helpful to determine the predicted level of ground motion excitation for a region in consideration. In the present study, the state of Georgia is divided into six regions, as shown in Figure 3.5, based on the expected maximum PGA intensity. The northern region of the state is most susceptible to higher intensity earthquakes.  
	 
	Figure
	Figure 3.5 – Map of Georgia Showing Six Regions Considered in the Study. 
	3.2.1 Site Class A Seismic Hazard Map 
	Site Class A is characterized by very hard rock site conditions where the average shear seismic wave velocity is greater than 5000 ft/sec. The seismic hazard map for this site class for 
	Georgia is shown in 
	Georgia is shown in 
	Figure 3.6
	Figure 3.6

	. The maximum earthquake intensity level for Site Class A is 0.13 g. Hard rocky sites result in large attenuation distances and allow earthquake waves to spread over a vast region, depending on the intensity. The seismic intensity is the lowest compared to the other site classes. Because of the low seismic hazard level, the whole state falls under Seismic Zone 1-A. 

	 
	 
	Figure
	Figure 3.6 – Georgia Seismic Hazard Map for Site Class A. 
	3.2.2 Site Class B Seismic Hazard Map 
	 Site Class B is characterized by softer rock site conditions than Site Class A with an average seismic wave velocity between 2500 and 5000 ft/sec. As Shown in 
	 Site Class B is characterized by softer rock site conditions than Site Class A with an average seismic wave velocity between 2500 and 5000 ft/sec. As Shown in 
	Figure 3.7
	Figure 3.7

	, the entire state falls under Seismic Zone 1-A and does not require consideration of rigorous seismic detailing for design. The maximum PGA for Site Class B is 0.16 g. 

	 
	 
	Figure
	Figure 3.7 – Georgia Seismic Hazard Map for Site Class B. 
	3.2.3 Site Class C Seismic Hazard Map 
	Site Class C is characterized by very dense soil or rock where the average shear wave velocity ranges from 600 to 1200 ft/sec. The maximum PGA range for different regions for this site class is 0.05 g to 0.19 g. As depicted in 
	Site Class C is characterized by very dense soil or rock where the average shear wave velocity ranges from 600 to 1200 ft/sec. The maximum PGA range for different regions for this site class is 0.05 g to 0.19 g. As depicted in 
	Figure 3.8
	Figure 3.8

	, Regions 1 and 2 fall in Seismic Zone 1-B for Site Class C, whereas the rest of the state still falls in Seismic Zone 1-A. 

	 
	 
	Figure
	Figure 3.8 – Georgia Seismic Hazard Map for Site Class C. 
	3.2.4 Site Class D Seismic Hazard Map 
	Site Class D has softer soil site class conditions compared to Site Class C, leading to amplification of seismic waves, and is characterized by average shear velocity less than 600 ft/sec. 
	Figure 3.9
	Figure 3.9
	Figure 3.9

	 shows the seismic hazard map for Georgia for Site Class D. The seismic zone intensity increases from the southern to the northern parts of the state with maximum PGA equal to 0.24 g. 

	 
	 
	Figure
	Figure 3.9 – Georgia Seismic Hazard Map for Site Class D. 
	3.2.5 Site Class E Seismic Hazard Map 
	Site Class E site conditions are known to be highly reactive to seismic ground motions. The soil composition at these sites mainly consists of clayey or other type of soft soils. Such soils are susceptible to high moisture changes, allowing amplification of the ground motion. The seismic hazard map for Georgia for Site Class E is shown in 
	Site Class E site conditions are known to be highly reactive to seismic ground motions. The soil composition at these sites mainly consists of clayey or other type of soft soils. Such soils are susceptible to high moisture changes, allowing amplification of the ground motion. The seismic hazard map for Georgia for Site Class E is shown in 
	Figure 3.10
	Figure 3.10

	. Most of the state falls under Seismic Zone 2 for this site class, with the maximum PGA being 0.35 g in Region 1. 

	 
	 
	Figure
	Figure 3.10 – Georgia Seismic Hazard Map for Site Class E. 
	3.3 Georgia Highway Bridge Inventory Analysis 
	With 9514 bridges in Georgia, it is computationally infeasible to model and conduct a full detailed analysis of each bridge to obtain a fragility curve and assess its seismic vulnerability. Therefore, bridges are grouped into various classes for analysis. Nielson used this approach to classify bridges based on the type of construction and materials used in the bridges [8]. The present study applies such a classification. It is assumed that bridges within a bridge class behave in a similar way during an eart
	The National Bridge Inventory database (NBI), maintained by the Federal Highway Administration (FHWA) [37], records the information about all highway structures in the United States. The NBI database provides basic information of 15,122 highway structures in Georgia. Many of these structures are tunnels and culverts, which are assumed to represent a different type of system and therefore, not considered in this study. For the remaining 9514 bridges, a preliminary statistical distribution analysis using two 
	Table 3-5
	Table 3-5
	Table 3-5

	 shows the distribution of bridges in Georgia based on the construction material type listed in the NBI database [37]. The construction material used in Georgia is predominantly concrete, followed by steel. Similarly, 
	Table 3-6
	Table 3-6

	 shows the distribution of bridges in Georgia based on construction types listed in the NBI database [37]. 

	 
	Table 3-5 – Georgia Highway Bridges Classified by Construction Material [37]. 
	Table
	TBody
	TR
	Span
	Construction Materials 
	Construction Materials 

	Number of Bridges 
	Number of Bridges 

	Percentage 
	Percentage 


	TR
	Span
	Concrete 
	Concrete 

	3,227 
	3,227 

	33.9 
	33.9 


	Concrete Continuous 
	Concrete Continuous 
	Concrete Continuous 

	124 
	124 

	1.3 
	1.3 


	Steel 
	Steel 
	Steel 

	2,501 
	2,501 

	26.3 
	26.3 


	Steel Continuous 
	Steel Continuous 
	Steel Continuous 

	1,101 
	1,101 

	11.6 
	11.6 


	Prestressed Concrete 
	Prestressed Concrete 
	Prestressed Concrete 

	2,321 
	2,321 

	24.4 
	24.4 


	Prestressed Concrete Continuous 
	Prestressed Concrete Continuous 
	Prestressed Concrete Continuous 

	116 
	116 

	1.2 
	1.2 


	Wood or Timber 
	Wood or Timber 
	Wood or Timber 

	118 
	118 

	1.2 
	1.2 


	Masonry 
	Masonry 
	Masonry 

	3 
	3 

	0.0 
	0.0 


	Aluminum, Wrought Iron, or Cast Iron 
	Aluminum, Wrought Iron, or Cast Iron 
	Aluminum, Wrought Iron, or Cast Iron 

	1 
	1 

	0.0 
	0.0 


	TR
	Span
	Other 
	Other 

	2 
	2 

	0.0 
	0.0 




	 
	Table 3-6 – Georgia Highway Bridges Classified by Construction Type [37]. 
	Table
	TBody
	TR
	Span
	Construction Type 
	Construction Type 

	Number of Bridges 
	Number of Bridges 

	Percentage 
	Percentage 


	TR
	Span
	Slab 
	Slab 

	1,135 
	1,135 

	11.9 
	11.9 


	Stringer/Multi-beam or Girder 
	Stringer/Multi-beam or Girder 
	Stringer/Multi-beam or Girder 

	5,646 
	5,646 

	59.3 
	59.3 


	Girder and Floor Beam System 
	Girder and Floor Beam System 
	Girder and Floor Beam System 

	63 
	63 

	0.7 
	0.7 


	Tee Beam 
	Tee Beam 
	Tee Beam 

	2,123 
	2,123 

	22.3 
	22.3 


	Box Beam or Girders – Multiple 
	Box Beam or Girders – Multiple 
	Box Beam or Girders – Multiple 

	230 
	230 

	2.4 
	2.4 


	Box Beam or Girders – Single or Spread 
	Box Beam or Girders – Single or Spread 
	Box Beam or Girders – Single or Spread 

	131 
	131 

	1.4 
	1.4 


	Frame (Culverts Excluded) 
	Frame (Culverts Excluded) 
	Frame (Culverts Excluded) 

	24 
	24 

	0.3 
	0.3 


	Truss – Thru 
	Truss – Thru 
	Truss – Thru 

	51 
	51 

	0.5 
	0.5 


	Arch – Deck 
	Arch – Deck 
	Arch – Deck 

	55 
	55 

	0.6 
	0.6 


	TR
	Span
	Others 
	Others 

	95 
	95 

	0.6 
	0.6 




	 
	After examination of the NBI database, the research team assigned all the bridges in Georgia to one of seven bridge classes, as given in 
	After examination of the NBI database, the research team assigned all the bridges in Georgia to one of seven bridge classes, as given in 
	Table 3-7
	Table 3-7

	. The bridges grouped within each class typically would have similar responses to a seismic excitation. Multi-span simply supported 

	concrete bridges is the most common bridge class in Georgia and represents about 41.03% of bridges in the state. As this study focuses on the impact of seismic transverse spacing and lap splices in bridge columns, only multi-span bridges have been considered hereafter.  
	Table 3-7 – Georgia Bridge Classes and Their Proportions [37]. 
	Table
	TBody
	TR
	Span
	Bridge Class 
	Bridge Class 

	Abbreviation 
	Abbreviation 

	Number 
	Number 

	Percentage 
	Percentage 


	TR
	Span
	Multi-Span Continuous Steel Girder 
	Multi-Span Continuous Steel Girder 

	MSC Steel 
	MSC Steel 

	1,065 
	1,065 

	11.9 
	11.9 


	Multi-Span Simply Supported Concrete Girder 
	Multi-Span Simply Supported Concrete Girder 
	Multi-Span Simply Supported Concrete Girder 

	MSSS Concrete 
	MSSS Concrete 

	3,904 
	3,904 

	41.03 
	41.03 


	Multi-Span Simply Supported Steel Girder 
	Multi-Span Simply Supported Steel Girder 
	Multi-Span Simply Supported Steel Girder 

	MSSS Steel 
	MSSS Steel 

	1,516 
	1,516 

	15.93 
	15.93 


	Multi-Span Simply Supported Slab 
	Multi-Span Simply Supported Slab 
	Multi-Span Simply Supported Slab 

	MSSS Slab 
	MSSS Slab 

	951 
	951 

	10.00 
	10.00 


	Single-Span Concrete Girder 
	Single-Span Concrete Girder 
	Single-Span Concrete Girder 

	SS Concrete 
	SS Concrete 

	362 
	362 

	3.80 
	3.80 


	Single-Span Steel Girder 
	Single-Span Steel Girder 
	Single-Span Steel Girder 

	SS Steel 
	SS Steel 

	721 
	721 

	7.58 
	7.58 


	TR
	Span
	Other 
	Other 

	Other 
	Other 

	995 
	995 

	10.46 
	10.46 




	 
	3.3.1 Bridge Class Statistics 
	With the bridge classes defined, an examination of key bridge characteristics is necessary to select a representative bridge from each bridge class. Although the NBI database provides the basic bridge characteristics for bridges, detailed information of the representative bridge from each bridge class is obtained from the bridge plans. This step is necessary to generate accurate finite element models of the bridges. The following characteristics, obtained from the NBI database, provide insight into the typi
	 Number of spans (presented in 
	 Number of spans (presented in 
	 Number of spans (presented in 
	 Number of spans (presented in 
	Table 3-8
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	) 


	 Maximum span length (presented in 
	 Maximum span length (presented in 
	 Maximum span length (presented in 
	Table 3-9
	Table 3-9

	) 


	 Deck width (presented in 
	 Deck width (presented in 
	 Deck width (presented in 
	Table 3-10
	Table 3-10

	) 


	 Minimum vertical deck width (presented in 
	 Minimum vertical deck width (presented in 
	 Minimum vertical deck width (presented in 
	Table 3-11
	Table 3-11

	) 



	The mode for number of spans for most of the bridge classes in Georgia is 3. Hence, to be able to compare the results across the bridge classes, this study considers only 3-span bridges for each bridge class. Other parameters are chosen as close to the median values of the bridge class depending on the availability of bridge plans. 
	Table 3-8 – Span Number Statistics for the Four Bridge Classes. 
	Table
	TBody
	TR
	Span
	Bridge Class 
	Bridge Class 

	Mean 
	Mean 

	Standard Deviation 
	Standard Deviation 

	Median 
	Median 

	Maximum 
	Maximum 

	Minimum 
	Minimum 

	Mode 
	Mode 


	TR
	Span
	MSC Steel 
	MSC Steel 

	4.57 
	4.57 

	3.72 
	3.72 

	4 
	4 

	41 
	41 

	2 
	2 

	4 
	4 

	 
	 


	MSSS Concrete 
	MSSS Concrete 
	MSSS Concrete 

	5.17 
	5.17 

	4.49 
	4.49 

	4 
	4 

	89 
	89 

	2 
	2 

	3 
	3 

	 
	 


	MSSS Steel 
	MSSS Steel 
	MSSS Steel 

	3.97 
	3.97 

	2.27 
	2.27 

	3 
	3 

	40 
	40 

	2 
	2 

	3 
	3 

	 
	 


	TR
	Span
	MSSS Slab 
	MSSS Slab 

	5.95 
	5.95 

	4.16 
	4.16 

	5 
	5 

	56 
	56 

	2 
	2 

	3 
	3 

	 
	 




	 
	Table 3-9 – Maximum Span Length (ft.) Statistics for the Four Bridge Classes. 
	Table
	TBody
	TR
	Span
	Bridge Class 
	Bridge Class 

	Mean 
	Mean 

	Standard Deviation 
	Standard Deviation 

	Median 
	Median 

	Maximum 
	Maximum 

	Minimum 
	Minimum 

	Mode 
	Mode 


	TR
	Span
	MSC Steel 
	MSC Steel 

	82.22 
	82.22 

	45.87 
	45.87 

	83 
	83 

	280 
	280 

	10 
	10 

	27 
	27 


	MSSS Concrete 
	MSSS Concrete 
	MSSS Concrete 

	56.16 
	56.16 

	30.98 
	30.98 

	40 
	40 

	187 
	187 

	12 
	12 

	40 
	40 


	MSSS Steel 
	MSSS Steel 
	MSSS Steel 

	56.68 
	56.68 

	28.64 
	28.64 

	55 
	55 

	252 
	252 

	9 
	9 

	16 
	16 


	TR
	Span
	MSSS Slab 
	MSSS Slab 

	20.56 
	20.56 

	5.22 
	5.22 

	20 
	20 

	88 
	88 

	12 
	12 

	20 
	20 




	 
	Table 3-10 – Deck Width (in.) Statistics for the Four Bridge Classes. 
	Table
	TBody
	TR
	Span
	Bridge Class 
	Bridge Class 

	Mean 
	Mean 

	Standard Deviation 
	Standard Deviation 

	Median 
	Median 

	Maximum 
	Maximum 

	Minimum 
	Minimum 

	Mode 
	Mode 


	TR
	Span
	MSC Steel 
	MSC Steel 

	48.96 
	48.96 

	31.50 
	31.50 

	34.70 
	34.70 

	221.20 
	221.20 

	10.60 
	10.60 

	34.00 
	34.00 


	MSSS Concrete 
	MSSS Concrete 
	MSSS Concrete 

	47.18 
	47.18 

	25.47 
	25.47 

	41.30 
	41.30 

	522.40 
	522.40 

	12.40 
	12.40 

	41.30 
	41.30 


	MSSS Steel 
	MSSS Steel 
	MSSS Steel 

	47.28 
	47.28 

	33.89 
	33.89 

	34.30 
	34.30 

	220.10 
	220.10 

	8.00 
	8.00 

	25.20 
	25.20 


	TR
	Span
	MSSS Slab 
	MSSS Slab 

	28.12 
	28.12 

	6.69 
	6.69 

	25.80 
	25.80 

	96.00 
	96.00 

	12.00 
	12.00 

	25.20 
	25.20 




	 
	Table 3-11 – Minimum Vertical Deck Width (in.) Statistics for the Four Bridge Classes. 
	Table
	TBody
	TR
	Span
	Bridge Class 
	Bridge Class 

	Mean 
	Mean 

	Standard Deviation 
	Standard Deviation 

	Median 
	Median 

	Maximum 
	Maximum 

	Minimum 
	Minimum 

	Mode 
	Mode 


	TR
	Span
	MSC Steel 
	MSC Steel 

	17.62 
	17.62 

	3.10 
	3.10 

	16.11 
	16.11 

	42.09 
	42.09 

	10.06 
	10.06 

	16.07 
	16.07 


	MSSS Concrete 
	MSSS Concrete 
	MSSS Concrete 

	20.48 
	20.48 

	5.27 
	5.27 

	19.06 
	19.06 

	75.01 
	75.01 

	0.99 
	0.99 

	16.07 
	16.07 


	MSSS Steel 
	MSSS Steel 
	MSSS Steel 

	18.95 
	18.95 

	3.70 
	3.70 

	17.06 
	17.06 

	43.10 
	43.10 

	10.08 
	10.08 

	16.05 
	16.05 


	TR
	Span
	MSSS Slab 
	MSSS Slab 

	17.46 
	17.46 

	3.90 
	3.90 

	18.07 
	18.07 

	23.02 
	23.02 

	10.05 
	10.05 

	16.05 
	16.05 




	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 4 OVERVIEW OF FRAGILITY CURVES 
	In recent decades, fragility curves have become an important statistical tool to quantify the potential damage in a structure due to hazards. The first section of this chapter presents the general formulation used in this study to develop the fragility curves. The following sections address the limit states and the probabilistic seismic demand model. 
	 
	4.1 Analytical Fragility Curve Formulation  
	A fragility function, 𝐹, represents the probability of the demand meeting or exceeding a predefined capacity limit state, given the intensity measure of the hazard. Mathematically, the fragility function can be expressed in terms of a conditional probability as: 
	 
	 
	 
	 
	 

	𝐹=𝑃[𝐷−𝐶≥0|𝐼𝑀=𝑦] 
	𝐹=𝑃[𝐷−𝐶≥0|𝐼𝑀=𝑦] 

	(7) 
	(7) 




	where 𝐷 is the demand of the structural component, 𝐶 is the capacity of the component, 𝐼𝑀 is the intensity measure of the hazard, and 𝑦 is the realization of the hazard intensity. If fragility functions are calculated and plotted over a range of realizations of the chosen intensity measure, they yield a fragility curve. 
	where 𝐷 is the demand of the structural component, 𝐶 is the capacity of the component, 𝐼𝑀 is the intensity measure of the hazard, and 𝑦 is the realization of the hazard intensity. If fragility functions are calculated and plotted over a range of realizations of the chosen intensity measure, they yield a fragility curve. 
	Figure 4.1
	Figure 4.1

	 shows one such fragility curve obtained for a specified limit state. On the x-axis, this curve represents the considered intensity measure, and on the y-axis, it shows the associated risk. The intensity measure used to evaluate the fragility function in this study is peak ground acceleration. 

	 
	 
	Figure
	Figure 4.1 – Typical Fragility Curve. 
	There are three main methods to formulate fragility curves: (1) expert-based, (2) empirical, and (3) analytical. These methods can be combined to obtain more accurate fragility estimation. In fact, the multi-hazard risk analysis tool distributed by the Federal Emergency Management Agency (FEMA), HAZUS-MH, uses this kind of a hybrid approach to determine hazard risk analysis of structures [38]. Another way of obtaining more robust fragility functions is to use advanced statistical techniques, such as Bayesia
	Expert-based fragility curves were used to estimate the expected behavior of highway bridges in California due to data shortage [39]. This method is no longer popular to quantify fragility functions as there is a high level of uncertainty involved due to subjectivity of the procedure.  
	Empirical fragility curves rely on the post-hazard assessment of the structure to simulate the demand model. Many researchers used this methodology to formulate fragility functions after the Loma Prieta and Northridge earthquakes [40–42]. This method relies on evaluating fragility 
	functions through collection of binary pass/fail data from experts for the failure of a structure after the hazard. One could argue that this method should be the most highly favored to estimate damage risk, as the risk is derived from observations of the performance of the structure in the field. However, the major drawback of this method is that it requires an adequate number of structures from a bridge class to quantify the fragility functions. In practice, these data are limited. Moreover, as with the e
	With computational improvements over the past few decades, analytical fragility curves have become a widespread way to formulate fragility functions. When bridge inspection or ground motion data are not available, numerical simulations are used to quantify the capacity and/or demand of the structure in consideration. Typically, the capacity of the structural component is determined based on experimental tests or its geometric interpretation, and the demand imposed on the component during a hazard is compute
	4.1.1 Component-Level Fragility Curves 
	An analytical fragility approach is used to estimate the fragility functions for structural components. Due to the variabilities involved, such as geometry, hazard, etc., the capacity and demand models are random variables, rather than deterministic values. If both component capacity and demand models are assumed to follow a lognormal distribution, by the application of the central limit theorem, Equation 7 can be expressed as a lognormal cumulative distribution function in terms of the parameters of the ca
	 
	 
	 
	 
	 

	𝐹=Φ(ln𝑆𝑑/𝑆𝑐√𝛽𝑑2+𝛽𝑐2) 
	𝐹=Φ(ln𝑆𝑑/𝑆𝑐√𝛽𝑑2+𝛽𝑐2) 

	(8) 
	(8) 




	Where Φ(∙) is the standard normal cumulative distribution function, 𝑆𝑑 is the median parameter of the demand random variable,  𝛽𝑑 is the lognormal standard deviation of the demand random variable, 𝑆𝑐 is the median parameter of the capacity random variable, and  𝛽𝑐 is the lognormal standard deviation of the capacity random variable. All of these parameters are defined at each intensity level for which damage fragility is to be determined. From Equation 8, the parameters of the capacity and demand ran
	4.1.2 System-Level Fragility Curves 
	Component-level fragility curves can be helpful to determine the most vulnerable links in an overall system. They can also be used to determine appropriate retrofit strategies and component life-cycle cost analyses. However, these curves do not provide information about the vulnerability of the full structure. One component could be more susceptible to a ground motion than another when a complete structure is analyzed. To assess the vulnerability of the structure, the component-level curves must be combined
	In this study, a numerical Monte Carlo simulation approach is used to combine the component-level fragility curves. This process involves generating 𝑁 random samples from both capacity and demand variable distributions. While generating the samples from the capacity side, the correlation between the limit states is assumed to be equal to 1 to ensure that the numerical samples from each limit state rank in the same order that the limit states are defined. While generating the samples from the demand side, c
	 
	 
	 
	 
	 

	𝐼𝑓={1          if (𝑥𝑖,𝑥𝑗) ∈ 𝐹𝑖𝑗 0          if (𝑥𝑖,𝑥𝑗) ∉ 𝐹𝑖𝑗 
	𝐼𝑓={1          if (𝑥𝑖,𝑥𝑗) ∈ 𝐹𝑖𝑗 0          if (𝑥𝑖,𝑥𝑗) ∉ 𝐹𝑖𝑗 

	(9) 
	(9) 




	where 𝑥𝑖 and 𝑥𝑗 are the realization of the ith and jth distributions and 𝐹𝑖𝑗 is defined by the ith and jth limit state. 
	The indicator function can now be evaluated at equal intervals of a reasonable range of the intensity measure. At each value of the intensity measure, the failure probability can be estimated as:  
	 
	 
	 
	 
	 

	𝑃[𝐿𝑆|𝐼𝑀=𝑦]=∑𝐼𝑓𝑖𝑁𝑖=1𝑁 
	𝑃[𝐿𝑆|𝐼𝑀=𝑦]=∑𝐼𝑓𝑖𝑁𝑖=1𝑁 

	(10) 
	(10) 




	Note that 𝑁 is number of random sample generated from capacity and demand distributions. It is important to determine a reasonable number of samples to obtain an accurate probability of failure. The results from the sensitivity analysis of the variation of the failure probabilities were plotted with respect to number of samples. Approximately 150,000 samples are enough to stabilize the probability estimates.  
	4.2 Limit States 
	As stated in Section 4.1, limit state definitions are required to evaluate the fragility functions. In this study, the limit states of each component are based on either past experimental results or functional interpretation of the component. Engineering Demand Parameters (EDPs) such as displacement, curvature ductility, drift ratio, etc., have been used by researchers to define the limit states of columns. This is in accordance with the performance-based seismic design philosophy in the latest AASHTO LRFD 
	As stated in Section 4.1, limit state definitions are required to evaluate the fragility functions. In this study, the limit states of each component are based on either past experimental results or functional interpretation of the component. Engineering Demand Parameters (EDPs) such as displacement, curvature ductility, drift ratio, etc., have been used by researchers to define the limit states of columns. This is in accordance with the performance-based seismic design philosophy in the latest AASHTO LRFD 
	Table 4-1
	Table 4-1

	 describes the definitions adopted for each limit state from HAZUS-MH [38]. Each limit state is assumed to follow a lognormal distribution with the parameters of the distribution obtained from experimental data or past research. 

	Table 4-1 – HAZUS’ Qualitative Limit States [38]. 
	Table
	TBody
	TR
	Span
	Limit State 
	Limit State 

	Description 
	Description 


	TR
	Span
	Slight 
	Slight 

	Initial yielding in longitudinal rebars, cracking in column surfaces, minor cracking in plastic hinge regions. 
	Initial yielding in longitudinal rebars, cracking in column surfaces, minor cracking in plastic hinge regions. 


	Moderate 
	Moderate 
	Moderate 

	Minor spalling at column faces, shear cracks in columns, pile cap damage. 
	Minor spalling at column faces, shear cracks in columns, pile cap damage. 


	Extensive 
	Extensive 
	Extensive 

	Cracks exposing column core; shear failure of columns; flexural failure due to inadequate confinement, anchorage or lap splice; vertical pull of longitudinal reinforcement; ground displacement at column base. 
	Cracks exposing column core; shear failure of columns; flexural failure due to inadequate confinement, anchorage or lap splice; vertical pull of longitudinal reinforcement; ground displacement at column base. 


	TR
	Span
	Complete 
	Complete 

	Buckling of longitudinal rebars, vertical or lap splice failure, column collapse. 
	Buckling of longitudinal rebars, vertical or lap splice failure, column collapse. 




	 
	The following paragraphs provide descriptions of these limit states for each bridge component considered in the study. Although, in practice, the limit states are expected to vary with the service life of a structure due to aging, corrosion, deterioration, etc., such factors are not considered in this study. Therefore, the limit states are assumed to be constant throughout the service life of the bridge.  
	Static pushover tests on columns can be used to determine the force-deflection curves and column damage in terms of EDPs. Since the curvature of a structural member is a property of a cross section and is independent of the length of the member, the chosen EDP for this study is curvature ductility. The curvature ductility, 𝜇∅, of a structural member is defined as: 
	 
	 
	 
	 
	 

	𝜇∅=𝜅𝑚𝑎𝑥𝜅𝑦𝑖𝑒𝑙𝑑 
	𝜇∅=𝜅𝑚𝑎𝑥𝜅𝑦𝑖𝑒𝑙𝑑 

	(11) 
	(11) 




	where 𝜅𝑚𝑎𝑥 is the maximum curvature observed in the column under seismic shaking, and 𝜅𝑦𝑖𝑒𝑙𝑑 is the column yield curvature. 
	In the present study, the following three cases corresponding to non-seismic and seismic lap splice and transverse reinforcement spacing requirements are considered: 
	1. No Lap Splice with Non-Seismic Detailing: The lap splice is not provided at the base of the column and a non-seismic transverse reinforcement spacing of 12-in. is used. 
	1. No Lap Splice with Non-Seismic Detailing: The lap splice is not provided at the base of the column and a non-seismic transverse reinforcement spacing of 12-in. is used. 
	1. No Lap Splice with Non-Seismic Detailing: The lap splice is not provided at the base of the column and a non-seismic transverse reinforcement spacing of 12-in. is used. 

	2. Lap Splice with Non-Seismic Detailing: The lap splice is provided at the base of the column with transverse reinforcement spacing equal to 12-in.  
	2. Lap Splice with Non-Seismic Detailing: The lap splice is provided at the base of the column with transverse reinforcement spacing equal to 12-in.  

	3. Lap Splice with Seismic Detailing: The lap splice is provided at the base of the column with transverse reinforcement spacing equal to 3-in. 
	3. Lap Splice with Seismic Detailing: The lap splice is provided at the base of the column with transverse reinforcement spacing equal to 3-in. 


	The moment–curvature ductility plots along with the corresponding column limit states for the above-mentioned three cases are shown in 
	The moment–curvature ductility plots along with the corresponding column limit states for the above-mentioned three cases are shown in 
	Figure 4.2
	Figure 4.2

	. The column capacities in terms of curvature ductility are adopted from previous experimental test results [18, 44–48] that characterize four limit states characterized by slight, moderate, extensive, and complete damage. Slight damage corresponds to the curvature ductility at the first point of yield in the longitudinal rebar. Moderate damage corresponds to the spalling of cover concrete due to expansive force. Extensive damage corresponds to the exposure of concrete core or yielding of transverse reinfor

	For the three cases of column seismic design considered in this study, the column limit states are presented in 
	For the three cases of column seismic design considered in this study, the column limit states are presented in 
	Table 4-2
	Table 4-2

	. It is assumed that the reduction of transverse reinforcement does 

	not significantly affect the column capacity. Hence, for the seismic and non-seismic cases, the same limit state values have been assumed. 
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	(a) 
	(a) 
	(a) 

	(b) 
	(b) 
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	(c) 
	(c) 
	(c) 




	Figure 4.2 – Moment–Curvature Ductility Curves and Limit States for (a) Column with No Lap Splice and Non-Seismic Transverse Detailing; (b) Column with Lap Splice and Non-Seismic Transverse Detailing; and (c) Column with Lap Splice and Seismic Transverse Detailing. 
	 
	 
	 
	Table 4-2 – Limit State Median Values for Lap-Spliced Column Sections. 
	Table
	TBody
	TR
	Span
	Case 
	Case 

	Description 
	Description 

	Slight 
	Slight 

	Moderate 
	Moderate 

	Extensive 
	Extensive 

	Complete 
	Complete 


	TR
	Span
	1 
	1 

	No Lap Splice & Non-Seismic Detailing 
	No Lap Splice & Non-Seismic Detailing 

	1.64 
	1.64 

	5.88 
	5.88 

	13.47 
	13.47 

	17.13 
	17.13 


	2 
	2 
	2 

	Lap Splice & Non-Seismic Detailing 
	Lap Splice & Non-Seismic Detailing 

	1.00 
	1.00 

	2.93 
	2.93 

	4.85 
	4.85 

	8.71 
	8.71 


	TR
	Span
	3 
	3 

	Lap Splice & Seismic Detailing 
	Lap Splice & Seismic Detailing 

	1.64 
	1.64 

	5.88 
	5.88 

	13.47 
	13.47 

	17.13 
	17.13 




	 
	4.3 Probabilistic Seismic Demand Model 
	In addition to limit states, demand estimates are required to quantify the fragility functions of components. Probabilistic seismic demand models (PSDMs) obtained from analytical seismic analyses of the structure are used for this purpose. PSDMs evaluate the peak structural demand of a component as a function of intensity of ground motions. In this study, the PSDM model is obtained from nonlinear time history analyses by running the suite of 48 ground motions to consider the uncertainty in the structural re
	Cornell et al. [49] suggested a power function model relation to estimate the median demand from PSDM using the following relation: 
	 
	 
	 
	 
	 

	𝐸𝐷𝑃=𝑎 𝐼𝑀𝑏 
	𝐸𝐷𝑃=𝑎 𝐼𝑀𝑏 

	(12) 
	(12) 




	where EDP stands for Engineering Demand Parameters, and it refers to median demand in this equation, 𝑎 and b are the coefficients obtained from the linear regression analysis of the model. To calculate these coefficients, the demand model is transformed into linear space by taking the logarithm of both sides of Equation 12 to obtain the following equation: 
	 
	 
	 
	 
	 

	ln(𝐸𝐷𝑃)=ln(𝑎)+𝑏∗𝑙𝑛(𝐼𝑀) 
	ln(𝐸𝐷𝑃)=ln(𝑎)+𝑏∗𝑙𝑛(𝐼𝑀) 

	(13) 
	(13) 




	As stated before, the demand variable is assumed to follow a lognormal distribution in the study. It therefore follows a normal distribution in linear space, with a mean equal to zero and a constant standard deviation, 𝜎.  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 5 MODELING AND DETERMINISTIC SEISMIC BRIDGE ANALYSES 
	This chapter presents bridge characteristics and modeling details that are employed to generate three-dimensional (3-D) finite element models of the representative bridges from each multi-span bridge class in Georgia considered in this study. These 3-D models are useful to evaluate the expected seismic performance of bridges. The lap splice model, as explained in Chapter 2, is incorporated into the analytical bridge models to compare their expected seismic performance for different detailing cases. Column a
	 
	5.1 Typical Highway Bridge Components 
	The typical bridge model used in this study is based on Nielson [8], who conducted research on fragility functions for highway bridges in the CSUS. The most important bridge components for a highway bridge are depicted in 
	The typical bridge model used in this study is based on Nielson [8], who conducted research on fragility functions for highway bridges in the CSUS. The most important bridge components for a highway bridge are depicted in 
	Figure 5.1
	Figure 5.1

	 and can be categorized as follows: 

	 Superstructure: The components of a bridge that directly receive the live load compose the superstructure. These components typically consist of bridge girders, deck, parapet, etc. In this study, it is assumed that the bridge superstructure remains within the linear 
	 Superstructure: The components of a bridge that directly receive the live load compose the superstructure. These components typically consist of bridge girders, deck, parapet, etc. In this study, it is assumed that the bridge superstructure remains within the linear 
	 Superstructure: The components of a bridge that directly receive the live load compose the superstructure. These components typically consist of bridge girders, deck, parapet, etc. In this study, it is assumed that the bridge superstructure remains within the linear 


	range during an earthquake event. Therefore, its nonlinear properties are not considered. 
	range during an earthquake event. Therefore, its nonlinear properties are not considered. 
	range during an earthquake event. Therefore, its nonlinear properties are not considered. 

	 Substructure: These are the components that support the bridge and transfer the load from the superstructure and substructure to the surrounding soil. The substructure comprises bents, columns, foundations, and abutments. 
	 Substructure: These are the components that support the bridge and transfer the load from the superstructure and substructure to the surrounding soil. The substructure comprises bents, columns, foundations, and abutments. 

	 Bearings: Bearings are mechanical devices that allow for the interaction between the substructure and superstructure so that the load from the superstructure can be transferred to the substructure. 
	 Bearings: Bearings are mechanical devices that allow for the interaction between the substructure and superstructure so that the load from the superstructure can be transferred to the substructure. 


	 
	Superstructure 
	Superstructure 
	Figure

	 
	Figure
	Figure 5.1 – Typical Bridge Configuration. 
	The 3-D analytical models are generated using the open source finite element package OpenSees [50]. This package is preferred for the study as it permits users a flexibility to generate components with a great degree of accuracy and to evaluate the response of bridge components in detail. The response at the component level is studied in the transverse and longitudinal directions and combined using the square root of the sum of square roots technique (SRSS). The major 
	components studied are columns and bearings. The following subsections outline the model of the representative bridge for the four multi-span bridge classes. 
	5.2 Deterministic Seismic Response 
	Deterministic seismic analysis provides the bridge response at the component level. The Rayleigh damping assumed for all the models is 5%. The deterministic response is evaluated using a single ground motion from Rix and Fernandez-Leon [36] ground motions. 
	Deterministic seismic analysis provides the bridge response at the component level. The Rayleigh damping assumed for all the models is 5%. The deterministic response is evaluated using a single ground motion from Rix and Fernandez-Leon [36] ground motions. 
	Figure 5.2
	Figure 5.2

	 depicts the acceleration–time history plots of the selected ground motion. This ground motion has a maximum PGA of 0.36 g and duration equal to about 13 seconds. This ground motion is chosen to simulate the effect of the expected maximum PGA for Site Class E in Georgia, which is equal to 0.35 g. 

	 
	 
	 
	 
	 
	Figure
	Figure 5.2 – Acceleration–Time Plot for Rix and Fernandez-Leon Ground Motion Selected for Deterministic Bridge Analysis. 




	5.2.1 Multi-Span Simply Supported Concrete Girder Bridge 
	5.2.1.1 Superstructure 
	The multi-span simply supported (MSSS) concrete girder bridge class comprises about 41% of bridges in the state of Georgia. 
	The multi-span simply supported (MSSS) concrete girder bridge class comprises about 41% of bridges in the state of Georgia. 
	Figure 5.3
	Figure 5.3

	 presents the basic geometric layout for the MSSS 

	concrete girder bridge. The bridge has 3 spans, which are 67-ft-6-in., 75-ft, and 67-ft-6-in. long. The deck of the bridge is 43-ft-11-in. wide and uses an 8-in.-thick concrete slab supported by five AASHTO Type III Prestressed Concrete (PSC) beam girders on Spans 1 and 2 and AASHTO Type II PSC beam girders on Span 3. Bridges with other typical deck widths, e.g., 43-ft-3-in., would be expected to exhibit similar performance. The gaps present at the adjacent spans are 4-in., whereas at the abutments, the gap
	 
	Figure
	Figure 5.3 – Multi-Span Simply Supported Concrete Girder Bridge Layout. 
	5.2.1.2 Substructure 
	The substructure is made of 37-ft-10-in.-wide 2-column concrete bents. As illustrated in 
	The substructure is made of 37-ft-10-in.-wide 2-column concrete bents. As illustrated in 
	Figure 5.4
	Figure 5.4

	, the bent beam has a square cross section with an edge length of 3-ft-6-in., which is supported by 3-ft by 3-ft square columns. The bent beam uses five equally spaced #11 bars on the top and bottom edges and three equally spaced #5 bars on the side edges with a minimum clear 

	concrete cover of 2-in. with #4 bars for transverse reinforcement spaced at a maximum distance of 12-in. The two supporting columns for each bent have a center-to-center distance of 23-ft-8-in. and use reinforcement detailing of 12 #11 equally spaced rebars with transverse reinforcement being #4 bars spaced at 12-in. The average height of the columns is 26-ft and the lap splice extends 9-ft from the base of the column. The columns are supported by standard HP 14 × 73 steel H piles.  
	 
	Figure
	Figure 5.4 – Cross-Sectional Layout for Bent Beam and Column for Multi-Span Simply Supported Concrete Girder Bridge. 
	5.2.1.3 Bearings 
	Laminated elastomeric bearings are the most commonly used bearings for the MSSS concrete bridge class. These bearings have a dowel bar embedded in the concrete bent that extends into the bridge girder as shown in 
	Laminated elastomeric bearings are the most commonly used bearings for the MSSS concrete bridge class. These bearings have a dowel bar embedded in the concrete bent that extends into the bridge girder as shown in 
	Figure 5.5
	Figure 5.5

	. The elastomeric pad is reinforced using steel plates that are placed in between the layers of elastomer to reduce bulging and shear strains in the pad. Although the steel layers increase the compressive and flexural stiffness of the bearing pad, there is no significant change in the shear stiffness [51]. The behavior of these bearings is characterized by sliding of the girder over the elastomeric pad. Initially, there exists a gap between the girder and dowel bar as illustrated in 
	Figure 5.5
	Figure 5.5

	. The friction between the elastomer and girder provides the initial stiffness for sliding until the movement is enough to fill the gap between the dowel bar 

	and girder. At this point, the resistance to the sliding motion is provided by the combined action of the elastomeric pad and the dowel bar. 
	 
	Figure
	Figure 5.5 – Typical Layout of Elastomeric Bearing. 
	The initial stiffness provided by the elastomeric pad is modeled as an elastic perfectly plastic material as shown in 
	The initial stiffness provided by the elastomeric pad is modeled as an elastic perfectly plastic material as shown in 
	Figure 5.6
	Figure 5.6

	(a). Choi proposed a formulation for calculating the initial stiffness, 𝑘0, of the bearing as follows [52]: 

	 
	 
	 
	 
	 

	𝑘0=𝐺𝐴ℎ𝑟 
	𝑘0=𝐺𝐴ℎ𝑟 

	(14) 
	(14) 




	where 𝐺 is the shear modulus of the elastomer, 𝐴 is the area of the elastomeric pad, and ℎ𝑟 is the height of the bearing pad. The area and height of the elastomeric pad are dependent on the bearing configuration, and the shear modulus of the elastomer is taken as 131.57 lb/in2. 
	The frictional coefficient between the concrete girder and elastomeric pad governs the yield force that can be developed in the bearing pad. Experimental tests conducted on elastomeric bearings have revealed that the coefficient of friction is a function of the normal stress imposed by 
	the superstructure on the bearing. Based on experimental tests, Scharge proposed an empirical formula to determine the frictional coefficient, 𝜇𝑓, as follows [53]: 
	 
	 
	 
	 
	 

	𝜇𝑓=0.05+0.4𝜎𝑚 
	𝜇𝑓=0.05+0.4𝜎𝑚 

	(15) 
	(15) 




	where 𝜎𝑚 is the normal stress on the bearing pad due to the superstructure. 
	As the gap between the dowel bar and girder is filled, the dowel bar is engaged in the bearing sliding motion. The behavior of the dowel bar can be characterized as lateral force acting on a cantilever. Initially, when the dowel bar is in the elastic range, it is assumed to behave linearly. Under moderate to high lateral loads, the bar follows a nonlinear pattern until the fracturing of the bars, which leads to a sudden drop in the strength. Although the diameter of the dowel bars used for elastomeric beari
	As the gap between the dowel bar and girder is filled, the dowel bar is engaged in the bearing sliding motion. The behavior of the dowel bar can be characterized as lateral force acting on a cantilever. Initially, when the dowel bar is in the elastic range, it is assumed to behave linearly. Under moderate to high lateral loads, the bar follows a nonlinear pattern until the fracturing of the bars, which leads to a sudden drop in the strength. Although the diameter of the dowel bars used for elastomeric beari
	Figure 5.6
	Figure 5.6

	(b), used in the present study is taken from Choi’s work with the same stiffness values. 
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	Figure 5.6 – Stress–Strain Model Used for (a) Elastomeric Pad, and (b) Dowel Bar in the Elastomeric Bearing. 
	Note that the K values shown in Figure 5.6 represent stiffness values of the corresponding branches of the force-displacement curves.  
	5.2.1.4 Seismic Response 
	The effect of lap splice and transverse reinforcement spacing on the main components of the bridge is analyzed by nonlinear time history analyses. Due to the presence of a lap splice at the base of the column, more demand is imposed on the bridge columns. The demand is further increased when the lap splice is provided with non-seismic column transverse spacing. This phenomenon is illustrated in 
	The effect of lap splice and transverse reinforcement spacing on the main components of the bridge is analyzed by nonlinear time history analyses. Due to the presence of a lap splice at the base of the column, more demand is imposed on the bridge columns. The demand is further increased when the lap splice is provided with non-seismic column transverse spacing. This phenomenon is illustrated in 
	Figure 5.7
	Figure 5.7

	, which shows about 32% increase in the curvature demand when the lap splice is provided with non-seismic transverse reinforcement spacing and about 19% increase when the lap splice is provided with seismic transverse reinforcement spacing.  

	 
	Figure
	Figure 5.7 – Curvature Demand on Column Base  of MSSS Concrete Bridge. 
	The comparative force–displacement curves for the fixed and expansion laminated elastomeric bearings in the bridge are shown in 
	The comparative force–displacement curves for the fixed and expansion laminated elastomeric bearings in the bridge are shown in 
	Figure 5.8
	Figure 5.8

	. For the fixed bearings, the gap between the dowel bar and elastomeric pad is 0.12-in. 
	Figure 5.8
	Figure 5.8

	(a) shows the change in stiffness of the force–displacement curve of the fixed elastomeric bearing due to engagement of the dowel bar. Similarly, for the expansion bearing, the gap is 1.0-in., as shown in 
	Figure 5.8
	Figure 5.8

	(b). The bearing response for all three cases is similar because the chosen ground motion is not of a very high intensity. 

	 
	 
	 
	 
	 
	 
	 
	Figure
	(a) 

	 
	 
	Figure
	(b) 




	Figure 5.8 – Force–Displacement Curves for (a) Fixed, and (b) Expansion Laminated Elastomeric Bearings Used in MSSS Concrete Bridge. 
	5.2.2 Multi-Span Continuous Steel Girder Bridge 
	5.2.2.1 Superstructure 
	The next bridge class considered in the study was multi-span continuous (MSC) type steel girder bridges. This type of bridge comprises about 11% of bridges in Georgia. The basic geometric configuration for a representative bridge from this bridge class is shown in 
	The next bridge class considered in the study was multi-span continuous (MSC) type steel girder bridges. This type of bridge comprises about 11% of bridges in Georgia. The basic geometric configuration for a representative bridge from this bridge class is shown in 
	Figure 5.9
	Figure 5.9

	. The bridge consists of three spans and is 36-ft-10-in. wide. The span lengths for this bridge are 43-ft, 67-ft, and 43-ft. The deck is a composite steel deck supported by five wide-flange steel girders. 

	 
	Figure
	Figure 5.9 – Multi-Span Continuous Steel Girder Bridge Layout. 
	5.2.2.2 Substructure 
	Like the previous bridge class, the substructure consists of two-column bents. The average width of the bents is 43-ft and the average height of the columns is 26-ft. The columns are spaced at a distance of 20-ft. The lap splice is present at the base of the column and has a length of 6.5-ft. The cross-sectional layouts for the bent and column are shown in 
	Like the previous bridge class, the substructure consists of two-column bents. The average width of the bents is 43-ft and the average height of the columns is 26-ft. The columns are spaced at a distance of 20-ft. The lap splice is present at the base of the column and has a length of 6.5-ft. The cross-sectional layouts for the bent and column are shown in 
	Figure 5.10
	Figure 5.10

	. The bent has a square cross section with each side equal to 3-ft and is reinforced with seven #11 bars each at the top and bottom edges and two #4 bars on each side. The shear reinforcement for the bents is provided by #5 bars at 12-in. spacing. Likewise, the column has a square cross section with the edge length equal to 3-ft. The column reinforcement consists of 12 #12 equally spaced bars and #4 stirrups spaced at 12 in. 

	 
	Figure
	Figure 5.10 – Cross-Sectional Layout for Bent Beam and Column for Multi-Span Continuous Steel Girder Bridge. 
	5.2.2.3 Bearings 
	Low-profile steel bearings are the second most commonly used bearings for steel bridges in Georgia. A prototype of a low-profile bridge bearing is shown in 
	Low-profile steel bearings are the second most commonly used bearings for steel bridges in Georgia. A prototype of a low-profile bridge bearing is shown in 
	Figure 5.11
	Figure 5.11

	. These bearings are constructed by attaching a masonry plate to the top of the bent or abutment using anchor bolts and a sole plate underneath the girder. For fixed bearings, a curved sole plate and pintles are provided to restrict the translational movements while maintaining the rotational movement. For expansion bearings, no pintles are provided so that free translational movement is permitted to dissipate the energy.  

	 
	Figure
	Figure 5.11 – Typical Layout of Low-Profile Steel Fixed Bearing. 
	The study on analytical modeling of bridge steel bearings was initiated by Mander et al. [54]. However, the test apparatus used by them was not appropriate to simulate field conditions, as the test bearings were mounted to steel assemblies to constrain the damage only to the pintles. This is in contrast with field conditions where the masonry plate is attached to the concrete pedestal by means of anchor bolts. Thus, failure mechanism of either the anchor bolt or pintle, whichever happens first, could lead t
	The fuse capacity, 𝑉𝑓𝑢𝑠𝑒, for steel bearings can be calculated per the following equation: 
	 
	 
	 
	 
	 

	𝑉𝑓𝑢𝑠𝑒=𝜙𝑛0.6𝐹𝑢𝐴𝑏𝑠 
	𝑉𝑓𝑢𝑠𝑒=𝜙𝑛0.6𝐹𝑢𝐴𝑏𝑠 

	(16) 
	(16) 




	where 𝜙 is the strength reduction factor (equal to unity), 𝑛 is the number of shear transfer elements (equal to 2 as there are two anchors), 𝐹𝑢 is the ultimate tensile strength of the material, and 𝐴𝑏𝑠 is the effective cross-sectional area of the shear element. 
	Along with the fusing action, the bearing interface provides resistance to the translational movement through frictional force. Like elastomeric bearings, frictional resistance is modeled as elastic–perfectly plastic and is coupled with the anchor bolt backbone curve in parallel. 
	According to the latest AASHTO Specifications (2014), the use of steel bearings is recommended only as fixed bearings, whereas expansion steel bearings have become obsolete. However, as the representative bridge is an older bridge, steel bearings have been used as expansion bearings also. The only difference between fixed and expansion bearings is that there are no pintles to restrict the translational movement in the latter. 
	5.2.2.4 Seismic Response 
	Figure 5.12
	Figure 5.12
	Figure 5.12

	 shows the effect of the 9-ft lap splice and transverse reinforcement spacing on the curvature demand imposed on the MSC steel girder bridge column. As the ground motion is of medium PGA intensity, the column response mostly remains in the linear range. A decrease in the moment capacity and increase in the curvature demand on the column can be observed from the figure when the lap splice is present at the base of the column. The increase in curvature is approximately 12.12% when non-seismic transverse spaci

	 
	Figure
	Figure 5.12 – Curvature Demand on Column Base of MSC Steel Girder Bridge. 
	The force–displacement response for the fixed and expansion steel bearings for MSC steel girder bridges is shown in 
	The force–displacement response for the fixed and expansion steel bearings for MSC steel girder bridges is shown in 
	Figure 5.13
	Figure 5.13

	(a) and 
	Figure 5.13
	Figure 5.13

	(b), respectively. The bearing responses are very similar to those of the previous bridge class. The force–displacement response for both types of bearings stays in the linear range, which indicates that there was no rupture in either the pintles or anchors. 
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	Figure 5.13 – Force–Displacement Curves for (a) Fixed, and (b) Expansion Steel Bearings Used in MSC Steel Girder Bridge. 
	5.2.3 Multi-Span Simply Supported Steel Girder Bridge 
	5.2.3.1 Superstructure 
	The next bridge class considered in the study was MSSS steel girder. The general layout for the representative bridge in this bridge class is shown in 
	The next bridge class considered in the study was MSSS steel girder. The general layout for the representative bridge in this bridge class is shown in 
	Figure 5.14
	Figure 5.14

	. The bridge has a deck width of 43-ft-3-in. and is supported by five steel girders. The side spans of the bridge are 40-ft long, and the main span is 80-ft long. 

	 
	Figure
	Figure 5.14 – Multi-Span Simply Supported Steel Girder Bridge Layout. 
	5.2.3.2 Substructure 
	The substructure for this bridge is supported by two 2-column bents. The width is 39-ft and the average height of the two columns is 15-ft. The bent cross section is a square cross section with width equal to 3-ft-6-in. The bent is reinforced with 14 #11 bars on the top and bottom edges and 2 #6 bars on the side edges. The shear reinforcement comprises #5 bars spaced at 12-in. with a clear concrete cover of 2-in. 
	The substructure for this bridge is supported by two 2-column bents. The width is 39-ft and the average height of the two columns is 15-ft. The bent cross section is a square cross section with width equal to 3-ft-6-in. The bent is reinforced with 14 #11 bars on the top and bottom edges and 2 #6 bars on the side edges. The shear reinforcement comprises #5 bars spaced at 12-in. with a clear concrete cover of 2-in. 
	Figure 5.15
	Figure 5.15

	 depicts the column cross section, which is a square with the edge length equal to 3.5-ft. The column section is reinforced with eight equally spaced #11 bars with #6 bars providing the shear reinforcement at 6-in. spacing. Lap splice length is taken equal to 9.0-ft.  

	 
	Figure
	Figure 5.15 – Cross-Sectional Layout for Bent Beam and Column for Multi-Span Simply Supported Steel Girder Bridge. 
	5.2.3.3 Bearings 
	As stated in Section 
	As stated in Section 
	5.2.2.3
	5.2.2.3

	, the commonly used bearings for steel bridges in Georgia are low-profile steel bearings. This bridge class uses this same type of bearing.  

	 
	5.2.3.4 Seismic Response  
	 
	Figure
	Figure 5.16 – Curvature Demand on Column Base of MSSS Steel Girder Bridge. 
	For the MSSS steel bridge, there is more displacement demand imposed compared to the MSC steel bridge (see Figure 5.16). This could be the result of more inertial mass in the superstructure of the MSSS steel bridge.  
	5.2.4 Multi-Span Simply Supported Slab Bridge 
	5.2.4.1 Superstructure 
	The final bridge class considered in the study is MSSS slab bridges with pile bents. The general layout for the representative bridge in this bridge class is shown in Figure 5.17. This bridge class does not have columns. Instead, the bents are directly supported by piles. The deck consists of 15 box beams, leading to the deck width of about 46-ft. The end spans of the bridge are 40-ft long, and the middle span is 60-ft long. 
	5.2.4.2 Substructure 
	The substructure for this bridge class is pile bents (Figure 5.17). There are four bents in this representative bridge: two bents are located at two ends for abutments, and another two bents are in the middle of the bridge. All bents are supported directly by seven piles. The length of the 14 piles supporting two middle bents is 13.5-ft, measuring from the ground to the bottom of the bents. The piles extend 1.0-ft into the bent caps, as shown in Figure 5.18. The pile cross section is 20-in. diameter with a 
	The substructure for this bridge class is pile bents (Figure 5.17). There are four bents in this representative bridge: two bents are located at two ends for abutments, and another two bents are in the middle of the bridge. All bents are supported directly by seven piles. The length of the 14 piles supporting two middle bents is 13.5-ft, measuring from the ground to the bottom of the bents. The piles extend 1.0-ft into the bent caps, as shown in Figure 5.18. The pile cross section is 20-in. diameter with a 
	#4 @ 6.5
	#4 @ 6.5

	-in., and between the piles are #4 @ 10.5-in.  

	                                                       Elevation of the entire bridge 
	Figure
	              
	Figure
	                                                           Elevation of the pile bents  
	 
	 Elevation of the slab consisting of 15 box beams 
	Figure
	Figure 5.17 – Multi-Span Simply Supported Slab Bridge Layout. 
	 
	  
	Figure
	Figure
	Figure 5.18 – Cross-Sectional Layout for Bent Cap and Pile for Multi-Span Simply Supported Slab Bridge. 
	5.2.4.3 Bearings 
	There is a bearing pad below each box beam, as shown in Figure 5.19. Each bearing pad has two holes for two smooth dowel bars 1-in. diameter and 2-ft long. The hole size on the bearing pads for fixed bearings is 1.25-in., and the hole size on the bearing pads for expansion bearings is 2.5-in. The thickness for all the bearing pads is 0.5-in. The bearing model considers the lateral capacities of the elastomeric bearing pad and two dowel bars, as shown in Figure 5.6. 
	 
	Figure
	Figure
	Figure 5.19 –Layout for Fixed and Expansion Bearings for Multi-Span Simply Supported Slab Bridge. 
	5.2.4.4 Effect of Embedded Pile Length from Piles into Bent Caps (Experimental Results) 
	Ziehl et al. [56] performed a series of experimental tests to investigate the effect of embedded pile length into bent caps (see Figure 5.20). Four 18-in.-diameter piles were embedded into bent caps with 18-in., 26-in., and 22-in. embedment lengths. The lateral strengths were in a range of 13 to 20 kips. The pile with the longest embedment length (specimen IB-26-1) did not possess the highest strength. In addition, all four piles showed yield plateaus, regardless of the pile embedment length. This conclusio
	 
	Figure
	Figure
	 
	Figure 5.20 – Lateral Strength vs. Lateral Displacement of 18-in. Diameter Piles with 18-in., 26-in., and 22-in. Embedded Length. [56] 
	 
	 
	CHAPTER 6 SITE-SPECIFIC FRAGILITY CURVES 
	With the objective of assessing demands imposed on different bridge components, this chapter presents probabilistic seismic demand models (PSDMs) for multi-span highway bridge classes in Georgia. These curves are generated based on nonlinear dynamic analyses under a number of ground motions as a function of peak ground acceleration (PGA) and seismic detailing requirements. Furthermore, fragility curves at the component- and system-level for these bridges are presented in the next subsection. Based on these 
	 
	6.1 PSDMs for Multi-Span Highway Bridges 
	As discussed in Section 
	As discussed in Section 
	4.3
	4.3

	, PSDMs are generated for columns based on the maximum curvature ductility demands on them. A suite of 48 ground motions is used to assess the demand quantity of interest. PSDMs for various classes of bridges are plotted in Figure 6.1. PSDMs are plotted on a log–log scale with the demand variable on the y-axis and intensity measure on the x-axis. The PSDMs reveal the decrease in seismic performance for all three bridge classes when the logarithm of PGA is greater than −2. 
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	Figure 6.1 – PSDMs for Column Curvature Ductility Demand for (a) MSSS Concrete Bridge, (b) MSC Steel Girder Bridge, and (c) MSSS Steel Girder Bridge. 
	6.2 Seismic Fragility Curves and Site-Specific Risk Estimates 
	The following subsections present the column seismic fragility curves for the four limit states considered in this study. These curves are presented for three cases for lap splice and transverse reinforcement spacing: (1) no lap splice, (2) lap splice at the bottom of the column with a non-seismic transverse spacing (12-in. spacing), and (3) lap splice at the bottom of the column with a non-seismic transverse spacing (3-in. spacing). 
	6.2.1 Multi-Span Simply Supported Concrete Bridges 
	Figure 6.2
	Figure 6.2
	Figure 6.2

	 presents the fragility curves for all the limit states for these three cases, and Table 6-1 provides the probability estimates of exceeding the limit states.
	 
	Note that LS stands for 
	limit s
	tate
	 
	in the figures and tables
	.
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	Figure 6.2 – Seismic Fragility Curves for MSSS Concrete Class for (a) No-Lap Splice with Seismic Spacing (s = 3-in.), (b) Lap Splice with Non-Seismic Spacing (s = 12-in.), and (c) Lap Splice with Seismic Spacing (s = 3-in.). 
	 
	Table 6-1 – Comparative Probability Estimates of Exceeding Four Limit States for MSSS Concrete Bridges for (a) No-Lap Splice with Seismic Spacing (s = 3-in.), (b) Lap Splice with Non-Seismic Spacing (s = 12-in.), and (c) Lap Splice with Seismic Spacing (s = 3-in.). 
	(a) 
	(a) 
	(a) 
	(a) 
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	Table
	TR
	Span
	PGA (g) 
	PGA (g) 

	LS 1 
	LS 1 

	LS 2 
	LS 2 

	LS 3 
	LS 3 

	LS 4 
	LS 4 


	TR
	Span
	0.05 
	0.05 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.10 
	0.10 
	0.10 

	0.2% 
	0.2% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.15 
	0.15 
	0.15 

	2.0% 
	2.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.20 
	0.20 
	0.20 

	6.8% 
	6.8% 

	0.2% 
	0.2% 

	0.1% 
	0.1% 

	0.0% 
	0.0% 


	0.25 
	0.25 
	0.25 

	14.4% 
	14.4% 

	0.7% 
	0.7% 

	0.3% 
	0.3% 

	0.1% 
	0.1% 


	0.30 
	0.30 
	0.30 

	23.8% 
	23.8% 

	1.9% 
	1.9% 

	0.7% 
	0.7% 

	0.2% 
	0.2% 


	TR
	Span
	0.35 
	0.35 

	33.9% 
	33.9% 

	4.0% 
	4.0% 

	1.5% 
	1.5% 

	0.4% 
	0.4% 
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	Table
	TR
	Span
	PGA (g) 
	PGA (g) 

	LS 1 
	LS 1 

	LS 2 
	LS 2 

	LS 3 
	LS 3 

	LS 4 
	LS 4 


	TR
	Span
	0.05 
	0.05 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.10 
	0.10 
	0.10 

	2.1% 
	2.1% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.15 
	0.15 
	0.15 

	11.2% 
	11.2% 

	0.2% 
	0.2% 

	0.1% 
	0.1% 

	0.0% 
	0.0% 


	0.20 
	0.20 
	0.20 

	26.1% 
	26.1% 

	1.4% 
	1.4% 

	0.5% 
	0.5% 

	0.1% 
	0.1% 


	0.25 
	0.25 
	0.25 

	42.4% 
	42.4% 

	4.3% 
	4.3% 

	1.6% 
	1.6% 

	0.2% 
	0.2% 


	0.30 
	0.30 
	0.30 

	56.9% 
	56.9% 

	9.3% 
	9.3% 

	3.7% 
	3.7% 

	0.6% 
	0.6% 


	TR
	Span
	0.35 
	0.35 

	68.5% 
	68.5% 

	16.2% 
	16.2% 

	6.8% 
	6.8% 

	1.4% 
	1.4% 
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	Table
	TR
	Span
	PGA (g) 
	PGA (g) 

	LS 1 
	LS 1 

	LS 2 
	LS 2 

	LS 3 
	LS 3 

	LS 4 
	LS 4 


	TR
	Span
	0.05 
	0.05 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.10 
	0.10 
	0.10 

	0.4% 
	0.4% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.15 
	0.15 
	0.15 

	2.9% 
	2.9% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 

	0.0% 
	0.0% 


	0.20 
	0.20 
	0.20 

	9.3% 
	9.3% 

	0.4% 
	0.4% 

	0.1% 
	0.1% 

	0.0% 
	0.0% 


	0.25 
	0.25 
	0.25 

	18.9% 
	18.9% 

	1.3% 
	1.3% 

	0.5% 
	0.5% 

	0.1% 
	0.1% 


	0.30 
	0.30 
	0.30 

	30.1% 
	30.1% 

	3.4% 
	3.4% 

	1.2% 
	1.2% 

	0.3% 
	0.3% 


	TR
	Span
	0.35 
	0.35 

	41.4% 
	41.4% 

	6.7% 
	6.7% 

	2.5% 
	2.5% 

	0.8% 
	0.8% 



	 




	6.2.1.1 Site Class A 
	Table 6-2 presents the failure probabilities of the column reaching or exceeding each limit state. The maximum probability of exceeding Limit State 1 is estimated to be equal to 6.23% in Region 1. As all the probabilities are low, 6.5-ft lap splices with non-seismic transverse spacing are safe to be used for Site Class A. 
	Table 6-2 – Seismic Risk for MSSS Concrete Bridges for Site Class A when Lap-Splice with Non-Seismic Spacing is Provided. 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.13 
	0.13 

	6.23% 
	6.23% 

	0.07% 
	0.07% 

	0.03% 
	0.03% 

	0.00% 
	0.00% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.11 
	0.11 

	3.57% 
	3.57% 

	0.02% 
	0.02% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.08 
	0.08 

	0.66% 
	0.66% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.06 
	0.06 

	0.17% 
	0.17% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.05 
	0.05 

	0.02% 
	0.02% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.03 
	0.03 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.1.2 Site Class B 
	Although for Site Class B, the whole state falls in Seismic Zone 1-A, the earthquake intensities for each region are higher than those for Site Class A. This results in higher probabilities of reaching the limit states for Site Class B compared to Site Class A, as shown in 
	Although for Site Class B, the whole state falls in Seismic Zone 1-A, the earthquake intensities for each region are higher than those for Site Class A. This results in higher probabilities of reaching the limit states for Site Class B compared to Site Class A, as shown in 
	Table 6-3
	Table 6-3

	. The maximum probability of exceeding the first limit state is 13.83% in Region 1. Considering this risk, to be on the conservative side, lap splice with seismic reinforcement spacing could be provided for Region 1 for Site Class B. However, for the rest of the state, a lap splice with a non-seismic spacing is sufficient. 

	Table 6-3 – Seismic Risk for MSSS Concrete Bridges for Site Class B when Lap-Splice with Non-Seismic Spacing is Provided. 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.16 
	0.16 

	13.83% 
	13.83% 

	0.36% 
	0.36% 

	0.14% 
	0.14% 

	0.01% 
	0.01% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.14 
	0.14 

	8.76% 
	8.76% 

	0.14% 
	0.14% 

	0.06% 
	0.06% 

	0.00% 
	0.00% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.10 
	0.10 

	2.11% 
	2.11% 

	0.01% 
	0.01% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.08 
	0.08 

	0.66% 
	0.66% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.06 
	0.06 

	0.11% 
	0.11% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.04 
	0.04 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.1.3 Site Class C 
	As observed from 
	As observed from 
	Table 6-4
	Table 6-4

	(a) when a lap splice with non-seismic spacing is provided at the base of the columns, the probabilities of exceeding Limit State 1 for Seismic Zone 1-B (Regions 1 and 2) are 23.51% and 16.11%. 
	Table 6-4
	Table 6-4

	(b) presents the probabilities for Regions 1 and 2 when a lap splice with seismic spacing is provided at the base of the column. When the seismic spacing is provided, the probabilities of exceeding Limit State 1 for Regions 1 and 2 reduce to 8.03% and 4.78%, respectively. 
	Table 6-4
	Table 6-4

	(c) presents the probabilities for Regions 1 and 2 when no lap splice is provided at the base of the column. In this case, the probabilities of exceedance further reduce to 5.79% and 3.36%, respectively. Considering these values, for Site Class C, it is recommended that seismic spacing be provided for MSSS concrete bridge class when the bridge is in Seismic Zone 1-B. 

	 
	 
	 
	 
	 
	 
	 
	Table 6-4 – Seismic Risk for MSSS Concrete Bridges for Site Class C when (a) Lap-Splice with Non-Seismic Spacing is Provided, (b) Lap-Splice with Seismic Spacing is Provided, and (c) No Lap Splice is Provided. 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	23.51% 
	23.51% 

	1.10% 
	1.10% 

	0.42% 
	0.42% 

	0.04% 
	0.04% 


	2 
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	16.11% 
	16.11% 

	0.49% 
	0.49% 

	0.19% 
	0.19% 

	0.01% 
	0.01% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.12 
	0.12 

	4.80% 
	4.80% 

	0.05% 
	0.05% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.10 
	0.10 

	1.73% 
	1.73% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.07 
	0.07 

	0.36% 
	0.36% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.05 
	0.05 

	0.02% 
	0.02% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	8.03% 
	8.03% 

	0.27% 
	0.27% 

	0.10% 
	0.10% 

	0.02% 
	0.02% 


	TR
	Span
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	4.78% 
	4.78% 

	0.11% 
	0.11% 

	0.04% 
	0.04% 

	0.01% 
	0.01% 




	(c) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	5.79% 
	5.79% 

	0.13% 
	0.13% 

	0.05% 
	0.05% 

	0.00% 
	0.00% 


	TR
	Span
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	3.36% 
	3.36% 

	0.05% 
	0.05% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 




	 
	6.2.1.4 Site Class D 
	For Site Class D, 
	For Site Class D, 
	Table 6-5
	Table 6-5

	(a) shows that the probabilities of exceeding Limit State 1 are 40.15% and 29.38% for Regions 1 and 2, respectively, when a lap splice and non-seismic spacing are provided. When a lap splice is not provided at the column base as shown in Table 6-5(b), the probability of exceedance for Region 1 has a reduction of 26.99% for Limit State 1. Similarly, 

	when a lap splice is not provided at the column base, the probability of exceedance for Region 2 has a reduction of 21.31% for Limit State 1. Due to this considerable reduction in the risk, it is recommended that the lap splice should not be provided for Seismic Zone 2 for Site Class D.  
	For the rest of the state, the risk estimates are low due to lower earthquake intensities even though the regions fall in Seismic Zone 1-B. It is recommended that seismic spacing requirements be followed for Seismic Zone 1-B, particularly for Region 3, which sees a decrease in seismic risk of exceeding Limit State 1 from 13.83% to 3.90%. 
	Table 6-5 – Seismic Risk for MSSS Concrete Bridges for Site Class D when (a) Lap-Splice with Non-Seismic Spacing is Provided, (b) Lap-Splice with Seismic Spacing is Provided for Seismic Zone 1-B, and No Lap Splice is Provided for Seismic Zone 2. 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.24 
	0.24 

	40.15% 
	40.15% 

	3.76% 
	3.76% 

	1.43% 
	1.43% 

	0.20% 
	0.20% 


	2 
	2 
	2 

	2 
	2 

	0.21 
	0.21 

	29.38% 
	29.38% 

	1.80% 
	1.80% 

	0.68% 
	0.68% 

	0.08% 
	0.08% 


	3 
	3 
	3 

	1-B 
	1-B 

	0.16 
	0.16 

	13.83% 
	13.83% 

	0.36% 
	0.36% 

	0.14% 
	0.14% 

	0.01% 
	0.01% 


	4 
	4 
	4 

	1-B 
	1-B 

	0.13 
	0.13 

	6.62% 
	6.62% 

	0.08% 
	0.08% 

	0.04% 
	0.04% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-B 
	1-B 

	0.09 
	0.09 

	1.73% 
	1.73% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.06 
	0.06 

	0.17% 
	0.17% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.24 
	0.24 

	13.16% 
	13.16% 

	0.60% 
	0.60% 

	0.22% 
	0.22% 

	0.04% 
	0.04% 


	2 
	2 
	2 

	2 
	2 

	0.21 
	0.21 

	8.07% 
	8.07% 

	0.24% 
	0.24% 

	0.09% 
	0.09% 

	0.02% 
	0.02% 


	3 
	3 
	3 

	1-B 
	1-B 

	0.16 
	0.16 

	3.90% 
	3.90% 

	0.08% 
	0.08% 

	0.03% 
	0.03% 

	0.01% 
	0.01% 


	4 
	4 
	4 

	1-B 
	1-B 

	0.13 
	0.13 

	1.49% 
	1.49% 

	0.01% 
	0.01% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	TR
	Span
	5 
	5 

	1-B 
	1-B 

	0.09 
	0.09 

	0.28% 
	0.28% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.1.5 Site Class E 
	Table 6-6
	Table 6-6
	Table 6-6

	(a) presents the seismic risk estimated for the MSSS concrete bridge class for Site Class E when the lap splice is provided at the base of the column. For most regions, these values are large. Eliminating the lap splice reduces the probability of exceeding Limit State 1 by 34.66% for Region 1. The reduction of risk for other regions can be observed from 
	Table 6-6
	Table 6-6

	(b), as well. Therefore, it is recommended to provide no lap splice at the base of the column for Site Class E, particularly for Regions 1–5.  

	Table 6-6 – Seismic Risk for MSSS Concrete Bridges for Site Class E when (a) Lap-Splice with Non-Seismic Spacing is Provided, (b) Lap-Splice with Seismic Spacing is Provided for Seismic Zone 1-B and No Lap Splice is Provided for Seismic Zone 2. 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.35 
	0.35 

	68.53% 
	68.53% 

	16.19% 
	16.19% 

	6.81% 
	6.81% 

	1.41% 
	1.41% 


	2 
	2 
	2 

	2 
	2 

	0.28 
	0.28 

	51.39% 
	51.39% 

	7.06% 
	7.06% 

	2.76% 
	2.76% 

	0.44% 
	0.44% 


	3 
	3 
	3 

	2 
	2 

	0.25 
	0.25 

	42.37% 
	42.37% 

	4.29% 
	4.29% 

	1.64% 
	1.64% 

	0.23% 
	0.23% 


	4 
	4 
	4 

	2 
	2 

	0.20 
	0.20 

	26.10% 
	26.10% 

	1.38% 
	1.38% 

	0.52% 
	0.52% 

	0.06% 
	0.06% 


	5 
	5 
	5 

	2 
	2 

	0.15 
	0.15 

	11.17% 
	11.17% 

	0.23% 
	0.23% 

	0.09% 
	0.09% 

	0.01% 
	0.01% 


	TR
	Span
	6 
	6 

	1-B 
	1-B 

	0.10 
	0.10 

	2.11% 
	2.11% 

	0.01% 
	0.01% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 




	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.35 
	0.35 

	33.87% 
	33.87% 

	4.02% 
	4.02% 

	1.46% 
	1.46% 

	0.39% 
	0.39% 


	2 
	2 
	2 

	2 
	2 

	0.28 
	0.28 

	19.88% 
	19.88% 

	1.33% 
	1.33% 

	0.48% 
	0.48% 

	0.11% 
	0.11% 


	3 
	3 
	3 

	2 
	2 

	0.25 
	0.25 

	14.36% 
	14.36% 

	0.71% 
	0.71% 

	0.26% 
	0.26% 

	0.05% 
	0.05% 


	4 
	4 
	4 

	2 
	2 

	0.2 
	0.2 

	6.76% 
	6.76% 

	0.17% 
	0.17% 

	0.07% 
	0.07% 

	0.01% 
	0.01% 


	5 
	5 
	5 

	2 
	2 

	0.15 
	0.15 

	2.03% 
	2.03% 

	0.02% 
	0.02% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-B 
	1-B 

	0.10 
	0.10 

	0.36% 
	0.36% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.2 Multi-Span Continuous Steel Bridges 
	Seismic analysis of this bridge class is performed using the same set of ground motions and same lap splice cases as for the previous bridge class. Figure 6.3 presents the seismic fragility curves for the MSC steel bridge class.  
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	Figure 6.3 – Seismic Fragility Curves for MSC Steel Class for (a) No-Lap Splice with Seismic Spacing (s = 3-in.), (b) Lap Splice with Non-Seismic Spacing (s = 12-in.), and (c) Lap Splice with Seismic Spacing (s = 3-in.). 
	To facilitate comparison between the bridge classes and varying seismic detail cases, the probability values for seismic risk of exceeding limit states (LS) 1–4 are also presented in Table 6-7. Values are provided up to 0.4 g at intervals of 0.05 g.  
	Table 6-7 – Comparative Probability Estimates of Exceeding Four Limit States for MSC Steel Bridges for (a) No-Lap Splice with Seismic Spacing (s = 3-in.), (b) Lap Splice with Non-Seismic Spacing (s = 12-in.), and (c) Lap Splice with Seismic Spacing (s = 3-in.). 
	  (a) (b) 
	 
	Figure
	Figure
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	Figure
	Note that LS stands for limit state in the tables. 
	6.2.2.1 Site Class A 
	For MSC steel bridges in Site Class A, the corresponding probabilities of exceeding Limit States 1–4 for the six regions are shown in Table 6-8. Because the PGA intensities are low, the probabilities of exceeding all the limit states are low, as well. The maximum probability of 
	exceeding any limit state is in Region 1 and is equal to 5.34%. Thus, providing a long lap splice at the column base with non-seismic transverse spacing is safe for this site class. 
	Table 6-8 – Seismic Risk for MSC Steel Bridges for Site Class A when Lap-Splice with Non-Seismic Spacing is Provided. 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.13 
	0.13 

	5.34% 
	5.34% 

	0.34% 
	0.34% 

	0.14% 
	0.14% 

	0.02% 
	0.02% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.11 
	0.11 

	2.76% 
	2.76% 

	0.12% 
	0.12% 

	0.05% 
	0.05% 

	0.01% 
	0.01% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.08 
	0.08 

	0.36% 
	0.36% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.06 
	0.06 

	0.07% 
	0.07% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.05 
	0.05 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.03 
	0.03 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.2.2 Site Class B 
	For Site Class B, as shown in 
	For Site Class B, as shown in 
	Table 6-9
	Table 6-9

	, the maximum probability of exceeding any limit state is in Region 1 and is equal to 13.47%. This probability is higher than for Site Class A. Therefore, relative to Limit State 1, for Site Class B, if the bridge is in Region 1, it is recommended that seismic transverse spacing be used. If the limit state of interest is Limit State 2, then non-seismic spacing is sufficient. For the rest of the state, for all limit states, long lap splices with non-seismic spacing are safe. 

	 
	Table 6-9 – Seismic Risk for MSC Steel Bridges for Site Class B when Lap-Splice with Non-Seismic Spacing is Provided. 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.16 
	0.16 

	13.47% 
	13.47% 

	1.46% 
	1.46% 

	0.62% 
	0.62% 

	0.13% 
	0.13% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.14 
	0.14 

	7.95% 
	7.95% 

	0.63% 
	0.63% 

	0.26% 
	0.26% 

	0.05% 
	0.05% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.10 
	0.10 

	1.48% 
	1.48% 

	0.05% 
	0.05% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.08 
	0.08 

	0.36% 
	0.36% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.06 
	0.06 

	0.04% 
	0.04% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.04 
	0.04 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.2.3 Site Class C 
	For Site Class C, 
	For Site Class C, 
	Table 6-10
	Table 6-10

	(a) shows that Regions 1 and 2 show relatively higher probabilities of exceeding the Limit State 1 when a long lap splice with non-seismic spacing is used. However, when lap splice with seismic transverse reinforcement spacing is used, these probabilities reduce significantly from 24.60% to 10.78% for Region 1 and from 16.03% to 6.22% for Region 2, as shown in 
	Table 6-10
	Table 6-10

	(b). Hence, for Seismic Zone 1-B in Site Class B, it is recommended to use a lap splice with seismic reinforcement spacing. Again, this is relative to Limit State 1. Considering performance relative to Limit State 2, the probabilities of exceedance may be acceptable for the lap splice and non-seismic spacing. For Seismic Zone 1-A for all limit states, a long lap splice with non-seismic spacing is sufficient. 

	 
	Table 6-10 – Seismic Risk for MSC Supported Steel Bridges for Site Class C when (a) Lap-Splice with Non-Seismic Spacing is Provided, and (b) Lap-Splice with Seismic Spacing is Provided. 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	24.60% 
	24.60% 

	4.02% 
	4.02% 

	1.81% 
	1.81% 

	0.45% 
	0.45% 


	2 
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	16.03% 
	16.03% 

	1.95% 
	1.95% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.12 
	0.12 

	3.92% 
	3.92% 

	0.21% 
	0.21% 

	0.09% 
	0.09% 

	0.01% 
	0.01% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.10 
	0.10 

	1.17% 
	1.17% 

	0.03% 
	0.03% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.07 
	0.07 

	0.17% 
	0.17% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.05 
	0.05 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	10.78% 
	10.78% 

	0.56% 
	0.56% 

	0.09% 
	0.09% 

	0.04% 
	0.04% 


	TR
	Span
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	6.22% 
	6.22% 

	0.22% 
	0.22% 

	0.03% 
	0.03% 

	0.01% 
	0.01% 




	 
	6.2.2.4 Site Class D 
	For Site Class D, 
	For Site Class D, 
	Table 6-11
	Table 6-11

	(a) shows Limit State 1 probabilities of exceedance of 44.00% and 31.39% for Regions 1 and 2, respectively, when a long lap splice with non-seismic spacing is used. 
	Table 6-11
	Table 6-11

	(b) shows the probabilities of exceedance when no lap splice is used for Seismic Zone 2, and lap splice within the plastic hinge region and seismic spacing is used for Seismic Zone 1-B. The probabilities shown in 
	Table 6-11
	Table 6-11

	(b) are significantly lower than those in 
	Table 6-11
	Table 6-11

	(a), particularly for Regions 1–3 for Limit State 1. Therefore, it is recommended that for Site Class D the lap splice be outside the plastic hinge region for Seismic Zone 2 with seismic spacing if designing for Limit State 1. For Seismic Zone 1-B Region 3, also relative to Limit State 1, the lap splice can be within the plastic hinge region if seismic spacing is provided. Relative to Limit 

	State 2, it is recommended that lap splice outside the plastic hinge region and seismic spacing be provided for Region 1 to reduce the risk of exceeding Limit State 2 from 11.69% to 1.10%. 
	Table 6-11 – Seismic Risk for MSC Steel Bridges for Site Class D when (a) Lap-Splice with Non-Seismic Spacing is Provided, and (b) No Lap Splice with 3-in. Spacing for Seismic Zone 2 and Lap-Splice with 3-in. Spacing for Seismic Zone 1-B are Provided. 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.24 
	0.24 

	44.00% 
	44.00% 

	11.69% 
	11.69% 

	5.82% 
	5.82% 

	1.84% 
	1.84% 


	2 
	2 
	2 

	2 
	2 

	0.21 
	0.21 

	31.39% 
	31.39% 

	6.22% 
	6.22% 

	2.91% 
	2.91% 

	0.80% 
	0.80% 


	3 
	3 
	3 

	1-B 
	1-B 

	0.16 
	0.16 

	13.47% 
	13.47% 

	1.46% 
	1.46% 

	0.62% 
	0.62% 

	0.13% 
	0.13% 


	4 
	4 
	4 

	1-B 
	1-B 

	0.13 
	0.13 

	5.74% 
	5.74% 

	0.38% 
	0.38% 

	0.15% 
	0.15% 

	0.03% 
	0.03% 


	5 
	5 
	5 

	1-B 
	1-B 

	0.09 
	0.09 

	1.17% 
	1.17% 

	0.03% 
	0.03% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.06 
	0.06 

	0.07% 
	0.07% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.24 
	0.24 

	17.79% 
	17.79% 

	1.10% 
	1.10% 

	0.17% 
	0.17% 

	0.08% 
	0.08% 


	2 
	2 
	2 

	2 
	2 

	0.21 
	0.21 

	10.53% 
	10.53% 

	0.42% 
	0.42% 

	0.06% 
	0.06% 

	0.03% 
	0.03% 


	3 
	3 
	3 

	1-B 
	1-B 

	0.16 
	0.16 

	4.99% 
	4.99% 

	0.15% 
	0.15% 

	0.02% 
	0.02% 

	0.01% 
	0.01% 


	4 
	4 
	4 

	1-B 
	1-B 

	0.13 
	0.13 

	1.74% 
	1.74% 

	0.03% 
	0.03% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	5 
	5 

	1-B 
	1-B 

	0.09 
	0.09 

	0.27% 
	0.27% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.2.5 Site Class E 
	For Site Class E, the corresponding probabilities of exceeding various limit states when lap splice with non-seismic spacing are used are shown in 
	For Site Class E, the corresponding probabilities of exceeding various limit states when lap splice with non-seismic spacing are used are shown in 
	Table 6-12
	Table 6-12

	(a). The maximum probability of exceeding Limit State 1 is for Region 1 and is equal to 75.14%. Except for Region 6, which falls in Seismic Zone 1-B, the probabilities of exceeding Limit State 1 for all other regions are above 10%. AASHTO LRFD seismic provisions do not recommend lap splices for 

	Seismic Zone 2. 
	Seismic Zone 2. 
	Table 6-12
	Table 6-12

	(b) shows the probabilities of exceeding limit states when the lap splice is outside the plastic hinge region for Seismic Zone 2 and when it is within the plastic hinge region with seismic spacing for Seismic Zone 1-B. There is about a 30% reduction in the probabilities of exceeding Limit State 1 for Regions 1–3, a 20% reduction for Region 4, and a 10% reduction for Region 5 with this seismic detailing. Therefore, it is recommended that, relative to Limit State 1, the lap splice be outside the plastic hinge

	 
	Table 6-12 – Seismic Risk for MSC Steel Bridge Class for Site Class E when (a) Lap-Splice with Non-Seismic Spacing is Provided, and (b) No Lap Splice with 3-in. Spacing for Seismic Zone 2 and Lap-Splice with 3-in. Spacing for Seismic Zone 1-B are Provided. 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.35 
	0.35 

	75.14% 
	75.14% 

	37.22% 
	37.22% 

	22.37% 
	22.37% 

	10.01% 
	10.01% 


	2 
	2 
	2 

	2 
	2 

	0.28 
	0.28 

	56.78% 
	56.78% 

	19.63% 
	19.63% 

	10.46% 
	10.46% 

	3.80% 
	3.80% 


	3 
	3 
	3 

	2 
	2 

	0.25 
	0.25 

	46.51% 
	46.51% 

	13.07% 
	13.07% 

	6.59% 
	6.59% 

	2.14% 
	2.14% 


	4 
	4 
	4 

	2 
	2 

	0.20 
	0.20 

	27.56% 
	27.56% 

	4.93% 
	4.93% 

	2.26% 
	2.26% 

	0.59% 
	0.59% 


	5 
	5 
	5 

	2 
	2 

	0.15 
	0.15 

	10.54% 
	10.54% 

	0.98% 
	0.98% 

	0.41% 
	0.41% 

	0.08% 
	0.08% 


	TR
	Span
	6 
	6 

	1-B 
	1-B 

	0.10 
	0.10 

	1.48% 
	1.48% 

	0.05% 
	0.05% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 




	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.35 
	0.35 

	45.94% 
	45.94% 

	7.61% 
	7.61% 

	1.66% 
	1.66% 

	0.95% 
	0.95% 


	2 
	2 
	2 

	2 
	2 

	0.28 
	0.28 

	27.28% 
	27.28% 

	2.51% 
	2.51% 

	0.44% 
	0.44% 

	0.23% 
	0.23% 


	3 
	3 
	3 

	2 
	2 

	0.25 
	0.25 

	19.51% 
	19.51% 

	1.31% 
	1.31% 

	0.21% 
	0.21% 

	0.10% 
	0.10% 


	4 
	4 
	4 

	2 
	2 

	0.2 
	0.2 

	8.66% 
	8.66% 

	0.30% 
	0.30% 

	0.04% 
	0.04% 

	0.02% 
	0.02% 


	5 
	5 
	5 

	2 
	2 

	0.15 
	0.15 

	2.22% 
	2.22% 

	0.03% 
	0.03% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-B 
	1-B 

	0.10 
	0.10 

	0.35% 
	0.35% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.3 Multi-Span Simply Supported Steel Bridges 
	Seismic analysis of this bridge class uses the same set of ground motions and seismic detailing cases as for the previous bridge class. Figure 6.4 presents the seismic fragility curves for the MSSS steel bridge class. To facilitate comparison between the bridge classes and seismic detailing cases, the probability values are also presented in Table 6-13 up to 0.35 g at intervals of 0.05 g. In general, this bridge class shows increased probabilities of exceeding limit states compared to the previously discuss
	on the columns, resulting in higher probabilities of reaching the limit states. For MSSS steel bridges, the following results also consider the effect of the number of stirrups in each direction.   
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	Figure


	(a) 
	(a) 
	(a) 

	(b) 
	(b) 


	Figure 6.4 – Seismic Fragility Curves for MSSS Steel Bridges with 9-ft Lap Splice at 6-in. Spacing, a) One Stirrup in Each Direction b) Two Stirrups in Each Direction 
	Figure 6.4 – Seismic Fragility Curves for MSSS Steel Bridges with 9-ft Lap Splice at 6-in. Spacing, a) One Stirrup in Each Direction b) Two Stirrups in Each Direction 
	Figure 6.4 – Seismic Fragility Curves for MSSS Steel Bridges with 9-ft Lap Splice at 6-in. Spacing, a) One Stirrup in Each Direction b) Two Stirrups in Each Direction 




	 
	Table 6-13 – Comparative Probability Estimates of Exceeding Four Limit States for MSSS Steel Bridges for 9-ft Lap Splice with #6 Stirrup at 6-in. Spacing, (a) One Stirrup in Each Direction (b) Two Stirrups in Each Direction 
	(a) 
	Table
	TBody
	TR
	TD
	Table
	TR
	Span
	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	TD
	Span
	0.05 

	0.19% 
	0.19% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	0.10 
	0.10 

	9.16% 
	9.16% 

	0.26% 
	0.26% 

	0.10% 
	0.10% 

	0.01% 
	0.01% 


	TR
	Span
	TD
	Span
	0.15 

	33.85% 
	33.85% 

	3.51% 
	3.51% 

	1.38% 
	1.38% 

	0.22% 
	0.22% 


	TR
	Span
	0.20 
	0.20 

	59.19% 
	59.19% 

	13.19% 
	13.19% 

	5.72% 
	5.72% 

	1.29% 
	1.29% 


	TR
	Span
	TD
	Span
	0.25 

	76.90% 
	76.90% 

	28.11% 
	28.11% 

	13.66% 
	13.66% 

	4.00% 
	4.00% 


	TR
	Span
	0.30 
	0.30 

	87.43% 
	87.43% 

	44.44% 
	44.44% 

	24.17% 
	24.17% 

	8.72% 
	8.72% 


	TR
	Span
	TD
	Span
	0.35 

	93.25% 
	93.25% 

	59.17% 
	59.17% 

	35.68% 
	35.68% 

	15.22% 
	15.22% 



	 




	 (b) 
	Table
	TBody
	TR
	TD
	Table
	TR
	Span
	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	TD
	Span
	0.05 

	0.18% 
	0.18% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	0.10 
	0.10 

	8.63% 
	8.63% 

	0.25% 
	0.25% 

	0.10% 
	0.10% 

	0.01% 
	0.01% 


	TR
	Span
	TD
	Span
	0.15 

	32.51% 
	32.51% 

	3.31% 
	3.31% 

	1.31% 
	1.31% 

	0.21% 
	0.21% 


	TR
	Span
	0.20 
	0.20 

	57.62% 
	57.62% 

	12.56% 
	12.56% 

	5.45% 
	5.45% 

	1.23% 
	1.23% 


	TR
	Span
	TD
	Span
	0.25 

	75.59% 
	75.59% 

	27.01% 
	27.01% 

	13.10% 
	13.10% 

	3.83% 
	3.83% 


	TR
	Span
	0.30 
	0.30 

	86.49% 
	86.49% 

	43.03% 
	43.03% 

	23.31% 
	23.31% 

	8.36% 
	8.36% 


	TR
	Span
	TD
	Span
	0.35 

	92.63% 
	92.63% 

	57.68% 
	57.68% 

	34.60% 
	34.60% 

	14.66% 
	14.66% 



	 




	  
	According to the results shown above, two stirrups in each direction (four legs) decrease the probability of exceeding each limit state slightly in comparison with one stirrup in each direction (two legs). This is due to the fact that the combination of the 9-ft lap splice and #6 bar @ 
	6-in. spacing is sufficient to allow the lap splice to develop its flexural yield strength and residual strength. Therefore, the number of stirrups along each direction only marginally strengthens the confinement effect of core concrete. 
	6.2.3.1 Site Class A 
	For MSSS steel bridges, as all the regions for Site Class A experience very low earthquake intensities, the risk estimates are within the acceptable range, as shown in 
	For MSSS steel bridges, as all the regions for Site Class A experience very low earthquake intensities, the risk estimates are within the acceptable range, as shown in 
	Table 6-14
	Table 6-14

	. Having two legs or four legs for stirrups in each direction does not make a significant difference in terms of the risk values. 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6-14 – Seismic Risk for MSSS Steel Bridges for Site Class A with 9-ft Lap Splice,   (a) One Stirrup in Each Direction (b) Two Stirrups in Each Direction 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.13 
	0.13 

	21.93% 
	21.93% 

	1.41% 
	1.41% 

	0.55% 
	0.55% 

	0.07% 
	0.07% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.11 
	0.11 

	14.10% 
	14.10% 

	0.59% 
	0.59% 

	0.23% 
	0.23% 

	0.03% 
	0.03% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.08 
	0.08 

	3.33% 
	3.33% 

	0.04% 
	0.04% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.06 
	0.06 

	0.97% 
	0.97% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.05 
	0.05 

	0.14% 
	0.14% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.03 
	0.03 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	          (b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.13 
	0.13 

	20.91% 
	20.91% 

	1.33% 
	1.33% 

	0.52% 
	0.52% 

	0.07% 
	0.07% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.11 
	0.11 

	13.36% 
	13.36% 

	0.56% 
	0.56% 

	0.22% 
	0.22% 

	0.02% 
	0.02% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.08 
	0.08 

	3.11% 
	3.11% 

	0.04% 
	0.04% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.06 
	0.06 

	0.90% 
	0.90% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.05 
	0.05 

	0.13% 
	0.13% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.03 
	0.03 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.3.2 Site Class B 
	For Site Class B, although all the regions fall in Seismic Zone 1-A, 
	For Site Class B, although all the regions fall in Seismic Zone 1-A, 
	Table 6-15
	Table 6-15

	 shows that Regions 1 and 2 show relatively high risk values (>25%) for Limit State 1. The probabilities of exceedance of Limit State 2 are relatively low. The number of stirrups does not significantly alter the probability of exceedance. 

	 
	Table 6-15 – Seismic Risk for MSSS Steel Bridges for Site Class B with 9-ft Lap Splice,   (a) One Stirrup in Each Direction (b) Two Stirrups in Each Direction 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.16 
	0.16 

	39.32% 
	39.32% 

	4.89% 
	4.89% 

	1.96% 
	1.96% 

	0.34% 
	0.34% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.14 
	0.14 

	28.36% 
	28.36% 

	2.40% 
	2.40% 

	0.94% 
	0.94% 

	0.14% 
	0.14% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.10 
	0.10 

	9.16% 
	9.16% 

	0.26% 
	0.26% 

	0.10% 
	0.10% 

	0.01% 
	0.01% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.08 
	0.08 

	3.33% 
	3.33% 

	0.04% 
	0.04% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.06 
	0.06 

	0.65% 
	0.65% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.04 
	0.04 

	0.03% 
	0.03% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-A 
	1-A 

	0.16 
	0.16 

	37.88% 
	37.88% 

	4.63% 
	4.63% 

	1.86% 
	1.86% 

	0.32% 
	0.32% 


	2 
	2 
	2 

	1-A 
	1-A 

	0.14 
	0.14 

	27.15% 
	27.15% 

	2.26% 
	2.26% 

	0.88% 
	0.88% 

	0.13% 
	0.13% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.10 
	0.10 

	8.63% 
	8.63% 

	0.25% 
	0.25% 

	0.10% 
	0.10% 

	0.01% 
	0.01% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.08 
	0.08 

	3.11% 
	3.11% 

	0.04% 
	0.04% 

	0.02% 
	0.02% 

	0.00% 
	0.00% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.06 
	0.06 

	0.60% 
	0.60% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.04 
	0.04 

	0.03% 
	0.03% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.3.3 Site Class C 
	Similar to Site Class B, Regions 1 and 2 show relatively high risk values greater than 25% for Limit State 1, and low risk values for Limit State 2. Tables 6-16 summarizes the probability of exceedance for each region.  
	 
	 
	Table 6-16 – Seismic Risk for MSSS Steel Bridges for Site Class C with 9-ft Lap Splice,   (a) One Stirrup in Each Direction (b) Two Stirrups in Each Direction 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	55.58% 
	55.58% 

	11.20% 
	11.20% 

	4.77% 
	4.77% 

	1.02% 
	1.02% 


	2 
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	43.61% 
	43.61% 

	6.20% 
	6.20% 

	2.52% 
	2.52% 

	0.46% 
	0.46% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.12 
	0.12 

	17.88% 
	17.88% 

	0.94% 
	0.94% 

	0.36% 
	0.36% 

	0.04% 
	0.04% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.10 
	0.10 

	7.73% 
	7.73% 

	0.19% 
	0.19% 

	0.08% 
	0.08% 

	0.01% 
	0.01% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.07 
	0.07 

	1.91% 
	1.91% 

	0.02% 
	0.02% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.05 
	0.05 

	0.14% 
	0.14% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	1-B 
	1-B 

	0.19 
	0.19 

	54.01% 
	54.01% 

	10.65% 
	10.65% 

	4.54% 
	4.54% 

	0.97% 
	0.97% 


	2 
	2 
	2 

	1-B 
	1-B 

	0.17 
	0.17 

	42.11% 
	42.11% 

	5.88% 
	5.88% 

	2.39% 
	2.39% 

	0.44% 
	0.44% 


	3 
	3 
	3 

	1-A 
	1-A 

	0.12 
	0.12 

	16.99% 
	16.99% 

	0.89% 
	0.89% 

	0.34% 
	0.34% 

	0.04% 
	0.04% 


	4 
	4 
	4 

	1-A 
	1-A 

	0.10 
	0.10 

	7.28% 
	7.28% 

	0.18% 
	0.18% 

	0.07% 
	0.07% 

	0.01% 
	0.01% 


	5 
	5 
	5 

	1-A 
	1-A 

	0.07 
	0.07 

	1.78% 
	1.78% 

	0.02% 
	0.02% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.05 
	0.05 

	0.13% 
	0.13% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.3.4 Site Class D 
	For Site Class D, 
	For Site Class D, 
	Table 6-17
	Table 6-17

	 shows that Regions 1-3 have risk values greater than 25% for probabilities of exceeding Limit State 1. The number of stirrups does not significantly alter the probability of exceedance. 

	Table 6-17 – Seismic Risk for MSSS Steel Bridges for Site Class D with 9-ft Lap Splice,   (a) One Stirrup in Each Direction (b) Two Stirrups in Each Direction 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.24 
	0.24 

	74.91% 
	74.91% 

	25.85% 
	25.85% 

	12.36% 
	12.36% 

	3.50% 
	3.50% 


	2 
	2 
	2 

	2 
	2 

	0.21 
	0.21 

	63.40% 
	63.40% 

	15.87% 
	15.87% 

	7.04% 
	7.04% 

	1.68% 
	1.68% 


	3 
	3 
	3 

	1-B 
	1-B 

	0.16 
	0.16 

	39.32% 
	39.32% 

	4.89% 
	4.89% 

	1.96% 
	1.96% 

	0.34% 
	0.34% 


	4 
	4 
	4 

	1-B 
	1-B 

	0.13 
	0.13 

	22.98% 
	22.98% 

	1.55% 
	1.55% 

	0.60% 
	0.60% 

	0.08% 
	0.08% 


	5 
	5 
	5 

	1-B 
	1-B 

	0.09 
	0.09 

	7.73% 
	7.73% 

	0.19% 
	0.19% 

	0.08% 
	0.08% 

	0.01% 
	0.01% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.06 
	0.06 

	0.97% 
	0.97% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.24 
	0.24 

	73.55% 
	73.55% 

	24.81% 
	24.81% 

	11.84% 
	11.84% 

	3.35% 
	3.35% 


	2 
	2 
	2 

	2 
	2 

	0.21 
	0.21 

	61.86% 
	61.86% 

	15.14% 
	15.14% 

	6.71% 
	6.71% 

	1.60% 
	1.60% 


	3 
	3 
	3 

	1-B 
	1-B 

	0.16 
	0.16 

	37.88% 
	37.88% 

	4.63% 
	4.63% 

	1.86% 
	1.86% 

	0.32% 
	0.32% 


	4 
	4 
	4 

	1-B 
	1-B 

	0.13 
	0.13 

	21.92% 
	21.92% 

	1.46% 
	1.46% 

	0.57% 
	0.57% 

	0.08% 
	0.08% 


	5 
	5 
	5 

	1-B 
	1-B 

	0.09 
	0.09 

	7.28% 
	7.28% 

	0.18% 
	0.18% 

	0.07% 
	0.07% 

	0.01% 
	0.01% 


	TR
	Span
	6 
	6 

	1-A 
	1-A 

	0.06 
	0.06 

	0.90% 
	0.90% 

	0.01% 
	0.01% 

	0.00% 
	0.00% 

	0.00% 
	0.00% 




	 
	6.2.3.5 Site Class E 
	For Site Class E, most of the state falls in Seismic Zone 2. AASHTO LRFD Design Specifications do not recommend providing a lap splice at the column base for Seismic Zone 2. The probability of exceeding Limit State 1 is more than 25% for Regions 1-5. Regions 1-3 have seismic risk values of 25% or larger for Limit State 2.  
	 
	Table 6-18 – Seismic Risk for MSSS Steel Bridges for Site Class E with 9-ft Lap Splice,   (a) One Stirrup in Each Direction (b) Two Stirrups in Each Direction 
	(a) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.35 
	0.35 

	93.25% 
	93.25% 

	59.17% 
	59.17% 

	35.68% 
	35.68% 

	15.22% 
	15.22% 


	2 
	2 
	2 

	2 
	2 

	0.28 
	0.28 

	83.92% 
	83.92% 

	37.97% 
	37.97% 

	19.76% 
	19.76% 

	6.59% 
	6.59% 


	3 
	3 
	3 

	2 
	2 

	0.25 
	0.25 

	76.90% 
	76.90% 

	28.11% 
	28.11% 

	13.66% 
	13.66% 

	4.00% 
	4.00% 


	4 
	4 
	4 

	2 
	2 

	0.20 
	0.20 

	59.19% 
	59.19% 

	13.19% 
	13.19% 

	5.72% 
	5.72% 

	1.29% 
	1.29% 


	5 
	5 
	5 

	2 
	2 

	0.15 
	0.15 

	33.85% 
	33.85% 

	3.51% 
	3.51% 

	1.38% 
	1.38% 

	0.22% 
	0.22% 


	TR
	Span
	6 
	6 

	1-B 
	1-B 

	0.10 
	0.10 

	9.16% 
	9.16% 

	0.26% 
	0.26% 

	0.10% 
	0.10% 

	0.01% 
	0.01% 




	 
	(b) 
	Table
	TBody
	TR
	Span
	Region 
	Region 

	Zone 
	Zone 

	PGA (g) 
	PGA (g) 

	Limit State 1 
	Limit State 1 

	Limit State 2 
	Limit State 2 

	Limit State 3 
	Limit State 3 

	Limit State 4 
	Limit State 4 


	TR
	Span
	1 
	1 

	2 
	2 

	0.35 
	0.35 

	92.63% 
	92.63% 

	57.68% 
	57.68% 

	34.60% 
	34.60% 

	14.66% 
	14.66% 


	2 
	2 
	2 

	2 
	2 

	0.28 
	0.28 

	82.83% 
	82.83% 

	36.66% 
	36.66% 

	19.01% 
	19.01% 

	6.32% 
	6.32% 


	3 
	3 
	3 

	2 
	2 

	0.25 
	0.25 

	75.59% 
	75.59% 

	27.01% 
	27.01% 

	13.10% 
	13.10% 

	3.83% 
	3.83% 


	4 
	4 
	4 

	2 
	2 

	0.20 
	0.20 

	57.62% 
	57.62% 

	12.56% 
	12.56% 

	5.45% 
	5.45% 

	1.23% 
	1.23% 


	5 
	5 
	5 

	2 
	2 

	0.15 
	0.15 

	32.51% 
	32.51% 

	3.31% 
	3.31% 

	1.31% 
	1.31% 

	0.21% 
	0.21% 


	TR
	Span
	6 
	6 

	1-B 
	1-B 

	0.10 
	0.10 

	8.63% 
	8.63% 

	0.25% 
	0.25% 

	0.10% 
	0.10% 

	0.01% 
	0.01% 




	 
	6.2.4 Multi-Span Simply Supported Slab Bridges 
	Seismic analysis of this bridge class is done using the same set of ground motions as for the previous bridge classes. Figure 6.5 presents the seismic fragility curves for the MSSS slab bridge class. For comparison between the embedded pile case and the dowel pile case, the probability values are also presented in Table 6-19 up to 0.35 g at intervals of 0.05 g. In general, this bridge class shows much lower probabilities of damage compared to the other three bridge classes. This can be attributed to the lar
	shell on the reinforced concrete piles. In addition, the dowel pile case shows lower probabilities of damage because of the additional dowel bars in the piles. The embedded pile case is similar to the dowel pile case, as both cases have similar lateral capacities. Therefore, the embedded pile and dowel pile cases exhibit similar performance. 
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	(b) 




	Figure 6.5 – Seismic Fragility Curves for MSSS Slab Bridges with (a) Embedded Piles, and (b) Dowel Piles. 
	 
	Table 6-19 – Comparative Probability Estimates of Exceeding Four Limit States for MSSS Slab Bridges with (a) Embedded Piles, and (b) Dowel Piles. 
	 (a) (b) 
	    
	    
	    
	    
	    
	Figure
	Figure
	Note that LS stands for limit state in the tables. 




	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 7 ANALYSIS OF COLUMNS WITH VARIOUS TRANSVERSE REINFORCEMENT SPACINGS IN PLASTIC HINGES 
	The provisions 5.10.11.4.1d and e in the 2014 AASHTO LRFD Bridge Design Specifications [1] specify the transverse reinforcement area and spacing in the plastic hinge region. These are intended to support the axial load carried by the column core and to ensure that buckling of the longitudinal reinforcement is prevented. Thus, the spacing of the confining reinforcement is an important parameter to consider. In addition, there are impacts on constructability for varying spacing of the transverse reinforcement
	First, section analyses of seismically designed columns (#5 bars @ 4-in. o.c. transverse reinforcement) compared to non-seismically designed columns (#4 bars @ 12-in. o.c. transverse reinforcement) in both square and circular configurations were performed, as shown in Figure 7.1. The columns used are based on typical Georgia bridges, with concrete strength of 3500 psi and steel yield strength of 60,000 psi. The columns are 16-ft in height (Figure 2.14) and were modeled to have periods at approximately 0.6 s
	 
	 
	Figure
	Figure 7.1 – Section Analysis. 
	A study using a single ground motion from the Rix suite was completed, scaling its maximum PGA between 0.1 and 0.65 g. By scaling the PGA, researchers can determine under what magnitude ground motion the transverse reinforcement becomes a critical factor in the response of the column. A summary of the effect of the column section properties versus ground motion PGA is shown in Figure 7.2. The figure indicates that transverse reinforcement is not a significant factor until reaching PGA values greater than 0.
	 
	Figure
	Figure 7.2 – Rix Ground Motion Scaling Summary Comparison. 
	Detailed comparisons of the seismic responses under varying values of PGA (0.1, 0.2, 0.3, and 0.65 g) are shown in Figures 7.3–7.6, respectively. These plots exhibit that at PGAs of 0.3 g and lower, the responses of all columns are very similar. Although Figure 7.2 shows that under a higher PGA (0.65 g), the column curvature responses are different, the column drifts are similar. Furthermore, the maximum factored PGA in Georgia is only 0.35 g, below the level where there is a difference in response. 
	         
	Figure
	Figure
	Figure 7.3 – Rix Ground Motion Scaling Responses at 0.1 g. 
	 
	         
	Figure
	Figure
	Figure 7.4 – Rix Ground Motion Scaling Responses at 0.2 g. 
	 
	         
	Figure
	Figure
	Figure 7.5 – Rix Ground Motion Scaling Responses at 0.3 g. 
	 
	         
	Figure
	Figure
	Figure 7.6 – Rix Ground Motion Scaling Responses at 0.65 g. 
	Since the maximum transverse reinforcement spacing specified in the latest AASHTO LRFD Bridge Design Specifications was reduced to 4-in., the small spacing raises an issue that it is difficult for the concrete to uniformly and smoothly flow through reinforcement gaps. Thus, a spacing of 6-in. for #6 transverse reinforcement is more constructible. This spacing is studied compared to #3 @ 3-in. and #6 @ 4-in. to investigate the estimated differences in seismic risk. As shown in Figure 7.7(a), both #6 @ 6-in. 
	         
	Figure
	Figure
	 (a) (b) 
	 
	Figure
	 (c) 
	Figure 7.7 – Effects of Transverse Reinforcement Spacings at 3-in., 4-in., and 6-in. for (a) Concrete, (b) Longitudinal Reinforcement, and (c) Moment vs. Curvature. 
	Table 7.1 – Comparative Probability Estimates of Exceeding Four Limit States for Columns with: (a) #3 @ 3-in., and (b) #6 @ 6-in. 
	(a)                                                                  (b) 
	(a)                                                                  (b) 
	(a)                                                                  (b) 


	 
	Figure
	Figure
	Note that LS stands for limit state in the tables. 
	 
	CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 
	Because the state of Georgia is identified as a region with low to moderate seismic activity, prior to adoption of LRFD design specifications, few bridges were designed with seismic detailing. However, recent specifications, including integration of seismic provisions from AASHTO LRFD Bridge Design Specifications [1] into Georgia’s Bridge and Structures Design Manual [4], have increased the number of Georgia bridges requiring seismic design. This study investigates the impact of the most recent seismic deta
	The first part of the study focuses on a literature review of previous research on seismic detailing, highlighting the importance of providing adequate lap splice length and transverse reinforcement to increase the strength and ductility of columns, especially in the case of cyclic loading. To analyze the effect of lap splices, a lap splice force transfer mechanism used in this study is presented. The model based on this mechanism depends on various factors, including the length of the lap splice, the trans
	To study the impact of the most recent AASHTO LRFD Bridge Design Specifications [1] on seismic performance, it is necessary to identify the potential seismic hazard in the state of Georgia. This is accomplished by dividing the state into six regions based on maximum PGA for Site Classes A, B, C, D, and E. It is found that the northern region of Georgia for each site class is 
	most susceptible to potential earthquakes. The maximum PGA in the state is expected for Site Class E in the northern region of Georgia and is equal to 0.34 g.  
	The seismic detailing parameters, including lap splice and varying transverse reinforcement spacing values, are incorporated into 3-D finite element bridge models using the software OpenSees. These models are used to estimate the demand imposed on bridge columns through running nonlinear time history analyses. Four classes of highway bridges, namely MSSS concrete girder bridges, MSC steel girder bridges, MSSS steel girder bridges, and MSSS slab bridges, are analyzed to evaluate their seismic risk first base
	A probabilistic analysis is then conducted using a representative bridge from each bridge class. A suite of 48 ground motions is used to account for seismic uncertainty. The capacity and demand imposed on the columns are compared in terms of curvature ductility to evaluate their risk of damage. The probabilities of exceeding four limit states are found. These four limit states correspond to: curvature ductility at the first point of yield in the longitudinal rebar; spalling of cover concrete due to expansiv
	1. For MSSS concrete girder bridges, it is recommended that 6.5-ft lap splice can be provided at the base of the columns with 12-in. spacing for Seismic Zone 1-A irrespective of the site class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.83% for Region 1 with a PGA equal to 0.16 g, a transverse reinforcement spacing of 3-in. could be provided. For the rest of the state, lap splice with non-seismic spacing is sufficient (refer to Sections 
	1. For MSSS concrete girder bridges, it is recommended that 6.5-ft lap splice can be provided at the base of the columns with 12-in. spacing for Seismic Zone 1-A irrespective of the site class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.83% for Region 1 with a PGA equal to 0.16 g, a transverse reinforcement spacing of 3-in. could be provided. For the rest of the state, lap splice with non-seismic spacing is sufficient (refer to Sections 
	1. For MSSS concrete girder bridges, it is recommended that 6.5-ft lap splice can be provided at the base of the columns with 12-in. spacing for Seismic Zone 1-A irrespective of the site class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.83% for Region 1 with a PGA equal to 0.16 g, a transverse reinforcement spacing of 3-in. could be provided. For the rest of the state, lap splice with non-seismic spacing is sufficient (refer to Sections 
	1. For MSSS concrete girder bridges, it is recommended that 6.5-ft lap splice can be provided at the base of the columns with 12-in. spacing for Seismic Zone 1-A irrespective of the site class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.83% for Region 1 with a PGA equal to 0.16 g, a transverse reinforcement spacing of 3-in. could be provided. For the rest of the state, lap splice with non-seismic spacing is sufficient (refer to Sections 
	6.2.1.1
	6.2.1.1

	 and 
	6.2.1.2
	6.2.1.2

	).  



	For Site Class C, Regions 1 and 2 with PGAs 0.19 g and 0.17 g, respectively, fall in Seismic Zone 1-B. For these cases, it is recommended that seismic spacing of 3-in. be provided to reduce the risk of exceeding Limit State 1 from 23.51% and 16.11% to 8.03% and 4.78%, for Regions 1 and 2, respectively. The 6.5-ft lap splice can be at the base of the column for this site class (refer to Section 
	For Site Class C, Regions 1 and 2 with PGAs 0.19 g and 0.17 g, respectively, fall in Seismic Zone 1-B. For these cases, it is recommended that seismic spacing of 3-in. be provided to reduce the risk of exceeding Limit State 1 from 23.51% and 16.11% to 8.03% and 4.78%, for Regions 1 and 2, respectively. The 6.5-ft lap splice can be at the base of the column for this site class (refer to Section 
	6.2.1.3
	6.2.1.3

	).  

	For Site Class D, Regions 3–5 fall in Seismic Zone 1-B. Of these, seismic spacing is recommended for Region 3 to reduce the risk of exceeding Limit State 1 from 13.83% to 3.90% (refer to Section 
	For Site Class D, Regions 3–5 fall in Seismic Zone 1-B. Of these, seismic spacing is recommended for Region 3 to reduce the risk of exceeding Limit State 1 from 13.83% to 3.90% (refer to Section 
	6.2.1.4
	6.2.1.4

	). 

	Regions 1 and 2 for Site Class D and Regions 1–5 for Site Class E fall in Seismic Zone 2. For Seismic Zone 2, it is recommended that the lap splice not be provided at the base of the column, irrespective of the site class (refer to Section 
	Regions 1 and 2 for Site Class D and Regions 1–5 for Site Class E fall in Seismic Zone 2. For Seismic Zone 2, it is recommended that the lap splice not be provided at the base of the column, irrespective of the site class (refer to Section 
	6.2.1.5
	6.2.1.5

	). 

	2. 
	2. 
	2. 
	2. 
	For MSC steel girder bridges, 
	it is recommended that 9
	-
	ft lap splice can be provided at 
	the base of the columns with 12
	-
	in. spacing for Seismic Zone 1
	-
	A, irrespective of the site 
	class. For Site Class B, given a probability of exceedance of Limit State 1 of 13.47% for 
	Region 1 with a P
	GA equal to 0.16 g, a transverse reinforcement spacing of 3
	-
	in. could 
	be provided. For the rest of the state, lap splice with non
	-
	seismic spacing is sufficient 
	(refer to Sections 
	6.2.2.1
	6.2.2.1

	, 
	6.2.2.2
	6.2.2.2

	, and 
	6.2.2.3
	6.2.2.3

	).  



	For Seismic Zone 1-B for Site Classes C and D, the 9-ft lap splice could be provided at the base of the column with transverse reinforcement spacing recommended equal to 3-in. to reduce the risk of exceeding Limit State 1 by approximately 10%. Relative to Limit State 2, the probabilities of limit-state exceedance may be acceptable for the lap splice and non-seismic spacing (refer to Sections 6.2.2.3 and 
	For Seismic Zone 1-B for Site Classes C and D, the 9-ft lap splice could be provided at the base of the column with transverse reinforcement spacing recommended equal to 3-in. to reduce the risk of exceeding Limit State 1 by approximately 10%. Relative to Limit State 2, the probabilities of limit-state exceedance may be acceptable for the lap splice and non-seismic spacing (refer to Sections 6.2.2.3 and 
	6.2.2.4
	6.2.2.4

	). 

	For Seismic Zone 2, if designing for Limit State 1, it is recommended that the lap splice not be provided at the base of the column, irrespective of the site class D or E (refer to Sections 6.2.2.4 and 
	For Seismic Zone 2, if designing for Limit State 1, it is recommended that the lap splice not be provided at the base of the column, irrespective of the site class D or E (refer to Sections 6.2.2.4 and 
	6.2.2.5
	6.2.2.5

	).  

	3. For MSSS steel girder bridges, the results of the analysis show that the increase of legs from two to four for stirrups in each direction does not significantly reduce the probability of exceeding defined limit state (refer to Section 6.2.3). Site Class A does not require seismic detailing, as the seismic risk values are within the acceptable range (refer to Section 6.2.3.1). However, risk values are larger than 25% of exceeding Limit State 1 for Regions 1 and 2 (Site Class B and C), Regions 1-3 (Site Cl
	3. For MSSS steel girder bridges, the results of the analysis show that the increase of legs from two to four for stirrups in each direction does not significantly reduce the probability of exceeding defined limit state (refer to Section 6.2.3). Site Class A does not require seismic detailing, as the seismic risk values are within the acceptable range (refer to Section 6.2.3.1). However, risk values are larger than 25% of exceeding Limit State 1 for Regions 1 and 2 (Site Class B and C), Regions 1-3 (Site Cl
	3. For MSSS steel girder bridges, the results of the analysis show that the increase of legs from two to four for stirrups in each direction does not significantly reduce the probability of exceeding defined limit state (refer to Section 6.2.3). Site Class A does not require seismic detailing, as the seismic risk values are within the acceptable range (refer to Section 6.2.3.1). However, risk values are larger than 25% of exceeding Limit State 1 for Regions 1 and 2 (Site Class B and C), Regions 1-3 (Site Cl

	4. For multi-span simply supported slab bridges, the conventional practice is to support the bridge superstructure on piles. The pile-bent connection is created such that the pile is embedded into the bent cap a certain distance. In Georgia, the typical practice is to extend the pile 1-ft into the cap if the pile diameter is 20-in. or less.  
	4. For multi-span simply supported slab bridges, the conventional practice is to support the bridge superstructure on piles. The pile-bent connection is created such that the pile is embedded into the bent cap a certain distance. In Georgia, the typical practice is to extend the pile 1-ft into the cap if the pile diameter is 20-in. or less.  


	Specification 10.7.1.2 in the latest AASHTO LRFD Bridge Design Specifications (2014) suggests that the pile should extend at least 12-in. into the cap, which is the only 
	requirement in Seismic Zone 1. This specification is in agreement with the experimental results by Ziehl et al. [56] in 2012 (refer to Section 5.2.4.4). The pile embedment length does not significantly affect the pile lateral strength. 
	Additionally, according to Specification 5.13.4.6.2 [1], for Seismic Zone 2, piles may be used to resist both axial and lateral loads. The minimum depth of embedment and axial and lateral pile resistances required for seismic loads must be determined by design criteria established by site-specific geological and geotechnical investigations. Concrete piles are to be anchored to the pile footing or cap by either embedment of reinforcement or anchorages to resist uplift forces. Dowel bars designed as per the d
	The MSSS slab bridge class shows much lower limit state exceedance probabilities compared to the other three bridge classes (refer to Section 6.2.4). This can be attributed to a large number of piles in a bent (i.e., 7 piles in a bent) and the metal shell on the reinforced concrete piles. In addition, the dowel pile case shows a slightly lower probability because of the additional dowel bars in the piles. The embedded pile case is similar to the dowel pile case, as both cases have similar lateral capacities
	5. Both 4-in. and 6-in. spacings of transverse reinforcement provide the same confinement capacity for longitudinal lap-spliced bars in plastic hinge regions, with a small difference in the core concrete ductility (refer to Chapter 7). From the obtained results of bridge column responses, the comparisons of no lap-spliced columns with transverse spacings of 12-in. versus 3-in. show that the responses are similar, with only a slight decrease (see Figures 7.2–7.5). Thus, for the level of seismic hazard presen
	5. Both 4-in. and 6-in. spacings of transverse reinforcement provide the same confinement capacity for longitudinal lap-spliced bars in plastic hinge regions, with a small difference in the core concrete ductility (refer to Chapter 7). From the obtained results of bridge column responses, the comparisons of no lap-spliced columns with transverse spacings of 12-in. versus 3-in. show that the responses are similar, with only a slight decrease (see Figures 7.2–7.5). Thus, for the level of seismic hazard presen
	5. Both 4-in. and 6-in. spacings of transverse reinforcement provide the same confinement capacity for longitudinal lap-spliced bars in plastic hinge regions, with a small difference in the core concrete ductility (refer to Chapter 7). From the obtained results of bridge column responses, the comparisons of no lap-spliced columns with transverse spacings of 12-in. versus 3-in. show that the responses are similar, with only a slight decrease (see Figures 7.2–7.5). Thus, for the level of seismic hazard presen


	there is not a significant increase in performance for columns with tight transverse reinforcement spacing. From the results of the seismic risk assessment, the risk probabilities for the #3 @ 3 in., #6 @ 4-in., and #6 @ 6-in. cases for Georgia bridges are similar, with a difference of approximately 5% under the maximum factored PGA of 0.35 g in Georgia (see Table 7.1). Thus, for Georgia bridges, 6-in. maximum transverse reinforcement spacing is acceptable. 
	there is not a significant increase in performance for columns with tight transverse reinforcement spacing. From the results of the seismic risk assessment, the risk probabilities for the #3 @ 3 in., #6 @ 4-in., and #6 @ 6-in. cases for Georgia bridges are similar, with a difference of approximately 5% under the maximum factored PGA of 0.35 g in Georgia (see Table 7.1). Thus, for Georgia bridges, 6-in. maximum transverse reinforcement spacing is acceptable. 
	there is not a significant increase in performance for columns with tight transverse reinforcement spacing. From the results of the seismic risk assessment, the risk probabilities for the #3 @ 3 in., #6 @ 4-in., and #6 @ 6-in. cases for Georgia bridges are similar, with a difference of approximately 5% under the maximum factored PGA of 0.35 g in Georgia (see Table 7.1). Thus, for Georgia bridges, 6-in. maximum transverse reinforcement spacing is acceptable. 
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